Prove that for all integers $a$ and $b$ and all $n \in \mathbb N$,
$$(a-b) \mid (a^{n}-b^{n})$$
My attempt:
Take arbitrary $a,b \in \mathbb Z$.
By induction.
Base case: $n = 0$
$a^0 - b^0 = 1 - 1 = 0$ And $(a-b) \mid 0$
Suppose proposition holds for $n$, i.e
$$(a-b) \mid (a^{n}-b^{n})$$
Consider
$$\begin{align} a^{n+1} - b^{n+1} & = aa^{n} - bb^{n}\\ & = aa^{n} - bb^{n} + ba^{n} - ba^{n} \\ & = aa^{n} -ba^{n}+ba^n - bb^n \\ & = a^n(a - b) + b(a^{n} - b^{n}) \end{align}$$
Since $(a-b )\mid a^{n} - b^{n}$, we can write
$$a^{n} - b^{n} = k(a-b), k \in \mathbb Z$$
Substituting gives
$$a^n(a - b) + bk(a-b) = (a-b)(a^{n} + bk)$$ Hence $a^{n+1} - b^{n+1}$ is divisible by $(a-b)$. $\Box$
Is it correct?