How do I find the eigenvalues & eigenvectors of the following matrix?
\begin{bmatrix}a&b&b\\b&a&b\\b&b&a\end{bmatrix}
I feel like there is an easy trick to it. I have tried using trace and determinant but no luck so far.
How do I find the eigenvalues & eigenvectors of the following matrix?
\begin{bmatrix}a&b&b\\b&a&b\\b&b&a\end{bmatrix}
I feel like there is an easy trick to it. I have tried using trace and determinant but no luck so far.
We have that $(1,1,1)$ is an eigenvector with eigenvalue $a+2b$ we also know that the sum of eigenvalues is equal to Tr$(A)=3a$ and their product is equal to $\det(A)=a^3+2b^3-3ab^2=(a+2b)(a-b)^2$.
Therefore the eigenvalues are: $a+2b$ and $a-b$ and we can easily find the corresponding eigenvectors $(1,1,1),(1,-1,0),(0,1,-1)$.
Also note that $A$ is a circulant matrix.
Compute the eigenvalues via characteristic polynomial. For $x \in \Bbb C$, $$ \det (A - xI) = \begin{vmatrix} a - x & b & b \\ b & a-x & b \\ b & b & a - x \end{vmatrix} = \begin{vmatrix} a + 2b - x & a+ 2b - x & a + 2b - x \\ b & a-x & b \\ b & b & a - x \end{vmatrix} = (a + 2b - x) \begin{vmatrix} 1 & 1 & 1\\ b & a-x & b \\ b & b & a - x \end{vmatrix} = (a + 2b - x) \begin{vmatrix} 1 & 1 & 1\\ 0 & a-b-x & 0 \\ 0 & 0 & a-b-x \end{vmatrix} = (a+2b - x)(a-b - x)^2, $$ hence the eigenvalues are $a+2b, a-b, a-b$. Now solve linear equations $Av = (a+2b)v, A w = (a-b)w$. Easy to see that $$ v = [1\ \ 1\ \ 1] ^\mathsf {T}, w_1 = [1\ \ -1\ \ 0] ^\mathsf {T}, w_2= [1\ \ 0\ \ -1] ^\mathsf {T}. $$