1

Suppose $B$ has a full column rank. Does it hold that $\operatorname{rank}(AB)=\operatorname{rank}(A)$?


I found a similar post. But it does not prove or disprove the above statement.

PinkyWay
  • 4,565

1 Answers1

1

The statement is only true for $B$ square otherwise, as counterexample, we can consider $A_{n\times n} $ full rank and $B_{n\times 1} $ such that rank$(AB)=1$

$$A=\begin{pmatrix} 1&1 \\1&-1 \end{pmatrix}, B=\begin{pmatrix} 1\\0 \end{pmatrix} \implies AB=\begin{pmatrix} 1\\1 \end{pmatrix}$$

which leads to rank$(AB)=1$ with rank$(A)=2$.

user
  • 154,566