$\tan^{-1}x-\tan^{-1}y=\tan^{-1}\dfrac{x-y}{1+xy}$, $x>0$,$y>0$
This is the standard trigonometric identity for $x>0$,$y>0$
Now I want to know why it can't be $x>=0,y>=0$
To know that, I tried to prove for $x>=0,y>=0$ just to see if I get any contradiction
$\tan^{-1}x\in\left[0,\dfrac{\pi}{2}\right)$, $\tan^{-1}y\in\left[0,\dfrac{\pi}{2}\right)$
So $\tan^{-1}x-\tan^{-1}y\in\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)$ $$A=\tan^{-1}x,B=\tan^{-1}y$$ $$\tan A=x,\tan B=y$$
$$\tan(A-B)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$$ $$\tan(A-B)=\dfrac{x-y}{1+xy}$$
Taking $\tan^{-1}$ on both sides
$$\tan^{-1}(\tan(A-B))=\tan^{-1}\dfrac{x-y}{1+xy}$$
As $A-B \in \left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)$
$$A-B=\tan^{-1}\dfrac{x-y}{1+xy}$$
So I didn't get any contradiction during the entire result. So is $x=0$ or $y=0$ not taken in domain to avoid corner conditions or there is something else?