0

How can one calculate $(-4339 \cdot 8559) \text{ mod } 43$ without a calculator?

I know that the solution is 8, but just because i used a calculator. What is the correct way when trying to calculate modulo with big numbers? I know Fermats little theorem, but we can't apply it here.

Jyrki Lahtonen
  • 133,153

4 Answers4

3

Look for large, but easy to find, multiples of 43 that are close to the numbers you have. Then you can reduce each factor mod 43 and multiply what's left.

3

You can rewrite it as follows:

$$-4339 \times 8559 = (-101 \times43+4) (199 \times 43 + 2)\equiv 4 \times 2 \pmod{43}$$

because $4339=4343-4=101 \times 43-4$ and $8559=8600-41=200 \times 43 - 41 = 199 \times 43 + 2$

Andronicus
  • 3,436
2

You have that $a\cdot b\pmod{n} \equiv ((a\mod n)\cdot (b\mod n)) \pmod n$

kingW3
  • 13,496
2

Employing $\ a,b\, :=\, a\cdot 100+b =\,$ radix $100$ notation allowing negative digits $\,a,b\,$ makes it easy

$\!\!\bmod 43\!:\ {-}4339\, = -43,\color{#c00}{-39}\, \equiv\, 0,\:\!\color{#c00}4\ $

$\qquad\qquad\ \ 85,59\, =\ \ \ 86,\color{#0a0}{-41}\, \equiv\, 0,\:\!\color{#0a0}2,\ $ by carrying $1,\,$ i.e. $\ a,b\, =\, a\!+\!1,\,b\!-\!100$

Hence we infer: $\:\! \ {-}4339\cdot 8559\, \equiv\, \color{#c00}4\cdot \color{#0a0}2\,\equiv\, 8\ \,$ by Congruence Sum & Product Rules.

Remark $ $ This is a special case of the universal divisibility test.

Bill Dubuque
  • 272,048