Let $a,b \in \mathbb Z$. I need to calculate the $\mathrm{gcd}$ of a linear combinations of a,b knowing $\mathrm{gcd}(a,b)$.
I know that $a^2 + b^2 = 0 (\mathrm{mod} 4)$ and $5a+7b=2$, I used this info to find that $\mathrm{gcd}(a,b) = 2$ now I am asked to calculate $\mathrm{gcd}(7a+14b, 14a+21b)$. This is as far as I got:
$\mathrm{gcd}(7a+14b, 14a+21b)$ = $\mathrm{gcd}(7(a+2b), 7(2a+3b))$ = $7\cdot\mathrm{gcd}(a+2b, 2a+3b)$