Hint $\ $ It is the special case: $\ \ \begin{align} &\ \ \ m,\ M,\ \ \, n,\,\ N,\ d\\ =\ &\phi(p),\,p,\,\phi(q),\,q,\ \ 2\end{align}\ \,$ in the $\rm lcm$-based generalization below
$\!\begin{align}\text{The proof below shows that:} \ \ \ \ \color{#c00}{a^{\large m}}&\equiv \color{#c00}1\pmod{M}\\ a^{\large n} &\equiv 1\pmod {N}\end{align}\, \Rightarrow\ a^{\large\color{#0a0}{{\rm lcm}(m,n)}}\!\equiv 1\pmod{{\rm lcm}(M,N})$
${\rm so}\ \ d\mid m,n\,\Rightarrow\,m,n\mid mn/d\, \Rightarrow\ \color{#0a0}{{\rm lcm}(m,n)}\mid mn/d\ \Rightarrow\, \bbox[5px,border:1px solid #c00]{a^{\large mn/d}\ \equiv\ 1\ \ \pmod{{\rm lcm}(M,N})}$
by applying $\color{#90f}{\rm MOR}$ = Modular Order Reduction $ $ [or directly: $\,a^{\large {\color{#0a0}{\ell}}}\equiv 1\,\Rightarrow\, a^{\large \ell\:\! k}\!\equiv (a^{\large\color{#0a0}{\ell}})^{\large k}\!\equiv 1^{\large k}\equiv 1$]
Proof $\ $ Let $\,\ell={\rm lcm}(m,n).\,$ Then $\ m\mid\ell\ $ so $\ \color{#c00}{a^{m} \equiv 1}\,\Rightarrow a^{\ell}\equiv 1\pmod{\!M},\,$ again by $\color{#90f}{\rm MOR}$.
Same $\!\bmod N,\,$ so $\, M,N\mid a^{\ell}-1\,\Rightarrow\,{\rm lcm}(M,N)\mid a^{\ell} -1\ $ [or we can use CCRT $ $ vs. $\,\rm lcm\!$ ]