Let $x = \frac{2 u}{1+u^2}$ to find
\begin{align}
-I &= \int \limits_0^1 \frac{-\ln(x) \arcsin(x)}{x \sqrt{1-x^2}} \, \mathrm{d} x = 2 \int \limits_0^1 \ln \left(\frac{1+u^2}{2u}\right) \frac{\arctan(u)}{u} \, \mathrm{d} u \\
&= 2 \left[- \ln(2) \int \limits_0^1 \frac{\arctan(u)}{u} \, \mathrm{d} u + \int \limits_0^1 \frac{- \ln(u) \arctan(u)}{u} \, \mathrm{d} u + \int \limits_0^1 \frac{\ln(1+u^2) \arctan(u)}{u} \, \mathrm{d} u \right] \\
&\equiv 2 \left[- \ln(2) \mathrm{G} + \sum \limits_{k=0}^\infty \frac{(-1)^k}{(2k+1)^3} + J\right] ,
\end{align}
where $\mathrm{G}$ is Catalan's constant. The series is well-known and equals $\frac{\pi^3}{32}$. The remaining integral can be found by writing
\begin{align}
J &= \int \limits_0^1 \frac{\ln(1+u^2) \arctan(u)}{u} \, \mathrm{d} u = \operatorname{Im} \int \limits_0^1 \frac{\ln^2(1 + \mathrm{i} u)}{u} \, \mathrm{d} u \\
&= \operatorname{Im} \left[\ln(-\mathrm{i})\ln^2(1+\mathrm{i}) + 2 \mathrm{i} \int \limits_0^1 \frac{-\ln(1 - (1 + \mathrm{i}u))}{1+\mathrm{i}u} \ln(1+\mathrm{i}u) \, \mathrm{d} u \right] \\
&= \operatorname{Im} \left[\ln(-\mathrm{i})\ln^2(1+\mathrm{i}) + 2 \operatorname{Li}_2(1+\mathrm{i}) \ln(1+\mathrm{i}) - 2 \mathrm{i} \int \limits_0^1 \frac{\operatorname{Li}_2(1+\mathrm{i}u)}{1+\mathrm{i} u} \, \mathrm{d} u\right] \\
&= \operatorname{Im} \left[\ln(-\mathrm{i})\ln^2(1+\mathrm{i}) + 2 \operatorname{Li}_2(1+\mathrm{i}) \ln(1+\mathrm{i}) - 2 \operatorname{Li}_3(1+\mathrm{i}) + 2 \operatorname{Li}_3(1)\right] \\
&= \frac{\pi^3}{16} + \frac{\pi}{8} \ln^2(2) + \ln(2) \mathrm{G} - 2 \operatorname{Im} \operatorname{Li}_3(1+\mathrm{i}) \, ,
\end{align}
where we have used $ \operatorname{Li}_2(1+\mathrm{i}) = \frac{\pi^2}{16} + \mathrm{i} \left(\mathrm{G} + \frac{\pi}{4} \ln(2)\right)$.
Combining these results we obtain
$$ -I = \frac{3 \pi^3}{16} + \frac{\pi}{4} \ln^2(2) - 4 \operatorname{Im} \operatorname{Li}_3(1+\mathrm{i}) \, . $$