I did:
$$ca = cb * k + r \Leftrightarrow \\ ca - cb*k = r \\ c(a-bk)=r \\ a-bk = r/c \\ a = bk +r/c$$
So, $gcd(a,b) = r/c$
What do I do next?
I did:
$$ca = cb * k + r \Leftrightarrow \\ ca - cb*k = r \\ c(a-bk)=r \\ a-bk = r/c \\ a = bk +r/c$$
So, $gcd(a,b) = r/c$
What do I do next?
Hint:
It suffices to show that $|c|\gcd(a,b)$ divides $ca$ and $cb$
and any number that divides $ca$ and $cb$ divides $|c|\gcd(a,b)$.