Given is $\epsilon = x+y\sqrt{m}$, where $m \in \mathbb{Z}_{>0}$ and $\epsilon \in \mathbb{Z}[\sqrt{m}]^*$. I have to show that for $\epsilon > 1$ implies $a>0$ and $b>0$
What I tried: I found out (using the norm) that the inverse of $\epsilon$ could be given by $a-b\sqrt{m}$ or $-a+b\sqrt{m}$. If $\epsilon > 1$, then $\epsilon^{-1} < 1$. Using that, I have to be able to show that both $a > 0$ and $b>0$, but I can't fount out how. Can someone please help me with that?