3

I am currently very interested in the derivation of the constructability of the 17-gon by Carl Friedrich Gauß. Has someone got an easy explanation for the solution of

$$x^{17} - 1=0?$$

That was the equation he solved with which he showed

$$\cos \frac{360^\circ}{17}=\frac{1}{16}\left( -1 + \sqrt{17} + \sqrt{ 2\left(17 -\sqrt{17} \right)}+ 2 \sqrt{ 17 + 3 \sqrt{17} - \sqrt{2 \left(17- \sqrt{17} \right)} - 2 \sqrt{2 \left(17+ \sqrt{17} \right)} } \right) \approx 0.9324722294.$$

Can someone briefly explain his derivation, please?

  • Do you know about the roots of unity? – Landuros Nov 08 '19 at 13:51
  • 3
    If you're looking specifically for Gauss' approach, the folks at the History of Science and Mathematics StackExchange might have some insights. – Blue Nov 08 '19 at 14:00
  • @Landuros Ah, he did solve the equation to have the 17 solutions on the unit circle which shows that a 17-gon is constructable. But how was he able to get the whole equation with cosine? – calculatormathematical Nov 08 '19 at 14:11
  • 1
    Once he has the cosine of the angle $\theta$ he can [with straight edge and compasses] plot the point $(\cos\theta, 0)$; then raise a perpendicular,which will cut the unit circle at the point $(\cos\theta,\sin\theta)$, so he's got one root. Now with his compasses he can mark off the other sixteen roots, they are at $2\theta$, $3\theta$ etc. – ancient mathematician Nov 08 '19 at 14:16
  • 1
    I am not sure Gauss actually quantified the trig function. My understanding is he never derived an actual construction, "merely" showed one could be derived. He later reported (with reference) a construction by Erchinger. – Oscar Lanzi Nov 08 '19 at 14:48
  • @OscarLanzi Do you know how he "merely showed one could be derived"? – calculatormathematical Nov 08 '19 at 14:52
  • Not exactly, but I think today it would be considered group ghrory. Possibly someone better versed in the details would know? – Oscar Lanzi Nov 08 '19 at 15:18
  • iirc, he outlined it as subset for regular $4^n +1 ,,n=2 $ regular polygon – Narasimham Nov 09 '19 at 19:18
  • If $x_n=\cos(2\pi n/17)$ then $x_n=x_{17-n}$ and using the identity $\cos a+\cos b=2\cos((a+b)/2)\cos((a-b)/2)$ we can write $x_1+x_4=x_{16}+x_{4}=2x_{10}x_6=2x_6x_7$. Repeat the process now with $x_6+x_7$ and see the magic happening. – Paramanand Singh Oct 03 '21 at 01:41

3 Answers3

7

This is a sketch, so there are gaps to be filled in. A similar procedure is discussed here. I am afraid I don't know an easy explanation you seek. My answer here relies on Galois theory, and I believe a similar process can be used to construct any regular $F_p$-gon if $F_p=2^{2^p}+1$ is a Fermat prime.

Let $\zeta$ denote the primitive $17$-th root of unity $$e^{\frac{2i\pi}{17}}=\cos\left(\frac{2\pi}{17}\right)+i\sin\left(\frac{2\pi}{17}\right).$$ Denote by $\Bbb K$ the extension field of $\mathbb{Q}$ generated by $\zeta$. Let $R$ be the ring $\mathbb{Z}/17\mathbb{Z}$ with the group of units $G=R^\times \cong \mathbb{Z}/16\mathbb{Z}$. Let $G_0$ be the trivial subgroup of $G$. Identify $G$ with the Galois group $\operatorname{Gal}(K/\mathbb{Q})$ via $$g\mapsto \Big(f(\zeta)\mapsto f\left(\zeta^g\right)\Big)$$ for each $g\in G$ and for each $f(x)\in \mathbb{Q}[x]$.

Since $3$ is a primitive element modulo $17$, the subgroup of $G$ generated by $3^{2^3}=3^{8}$ is a subgroup $G_1\geq G_0$ of $G$ with $[G_1:G_0]=2$. Define $$\omega_1=\zeta^{3^0}+\zeta^{3^8}=\zeta+\zeta^{16}.$$ Then, the fixed field $\Bbb K_1$ of $G_1$ is the subfield $\Bbb K_1=\mathbb{Q}(\omega_1)$ of $\Bbb K$ which satisfies $[\Bbb K:\Bbb K_1]=2$.

Now let $G_2$ be the subgroup of $G$ generated by $3^{2^2}=3^{4}$, so that $G_2$ contains $G_1$ and $[G_2:G_1]=2$. Define $$\omega_2=\zeta^{3^0}+\zeta^{3^4}+\zeta^{3^8}+\zeta^{3^{12}}=\zeta+\zeta^4+\zeta^{13}+\zeta^{16}.$$ Then, the fixed field $\Bbb K_2$ of $G_2$ is the subfield $\Bbb K_2=\mathbb{Q}(\omega_2)$ of $\Bbb K_1$ which satisfies $[\Bbb K_1:\Bbb K_2]=2$.

Next, let $G_3$ be the subgroup of $G_2$ generated by $3^{2^1}=3^2$, so that $G_3$ contains $G_2$ and $[G_2:G_3]=2$. Define $$\omega_3=\zeta^{3^0}+\zeta^{3^2}+\zeta^{3^4}+\zeta^{3^6}+\zeta^{3^8}+\zeta^{3^{10}}+\zeta^{3^{12}}+\zeta^{3^{14}},$$ i.e., $$\omega_3=\zeta+\zeta^2+\zeta^4+\zeta^8+\zeta^{9}+\zeta^{13}+\zeta^{15}+\zeta^{16}.$$ Therefore, the fixed field $\Bbb K_3$ of $G_3$ is the subfield $\Bbb K_3=\mathbb{Q}(\omega_3)$ of $\Bbb K_2$ which satisfies $[\Bbb K_2:\Bbb K_3]=2$.

Finally, note that $[\Bbb K_3:\mathbb{Q}]=2$. Therefore, $\omega_3$ is a root of an irreducible monic quadratic polynomial in $\mathbb{Q}[x]$. Let $$\omega_3'=\zeta^{3^1}+\zeta^{3^3}+\zeta^{3^5}+\zeta^{3^7}+\zeta^{3^9}+\zeta^{3^{11}}+\zeta^{3^{13}}+\zeta^{3^{15}},$$ so that $$\omega_3'=\zeta^3+\zeta^5+\zeta^6+\zeta^7+\zeta^{10}+\zeta^{11}+\zeta^{12}+\zeta^{14}.$$ It can be shown that $\omega_3+\omega_3'=-1$ and $\omega_3\omega_3'=-4$. Therefore, $\omega_3$ and $\omega_3'$ are roots of the polynomial $x^2+x-4$, so $$\Bbb K_3=\mathbb{Q}(\omega_3)\cong \mathbb{Q}[x]/(x^2+x-4),$$ and $$\{\omega_3,\omega'_3\}=\left\{\frac{-1\pm\sqrt{17}}{2}\right\}.$$ It can be seen that $$2\cos\left(\frac{2\pi}{17}\right)+2\cos\left(\frac{4\pi}{17}\right)+2\cos\left(\frac{8\pi}{17}\right)+2\cos\left(\frac{16\pi}{17}\right)=\omega_3=\frac{-1+\sqrt{17}}{2}.$$

Next, define $$\omega_2'=\zeta^{3^2}+\zeta^{3^6}+\zeta^{3^{10}}+\zeta^{3^{14}}$$ so that $$\omega'_2=\zeta^2+\zeta^8+\zeta^9+\zeta^{15}.$$ Therefore, $\omega_2+\omega_2'=\omega_3$ and $\omega_2\omega_2'=-1$. This means $\omega_2$ and $\omega'_2$ are roots of the polynomial $x^2-\omega_3x-1$, so \begin{align}\Bbb K_2&=\mathbb{Q}(\omega_2)\cong \Bbb K_3[x]/(x^2-\omega_3x-1)\\&\cong \Bbb{Q}[x]/(x^4+x^3-6x^2-x+1),\end{align} and $$\{\omega_2,\omega'_2\}=\left\{\frac{\omega_3\pm\sqrt{\omega_3^2+4}}{2}\right\}.$$ It can be seen that $$2\cos\left(\frac{2\pi}{17}\right)+2\cos\left(\frac{8\pi}{17}\right)=\omega_2=\textstyle\frac{\omega_3+\sqrt{\omega_3^2+4}}{2}=\frac{-1+\sqrt{17}+\sqrt{2(17-\sqrt{17})}}{4}.$$

Finally, let $$\omega'_1=\zeta^{3^4}+\zeta^{3^{12} }=\zeta^4+\zeta^{13}.$$ Therefore, $\omega_1+\omega_1'=\omega_2$ and $\omega_1\omega_1'=\frac{\omega_2^2-\omega_2'-4}{2}=\frac{\omega_2(1+\omega_3)-\omega_3-3}{2}$. This shows that $\omega_1$ and $\omega'_1$ are roots of the polynomial $x^2-\omega_2x+\frac{\omega_2(1+\omega_3)-\omega_3-3}{2}$, so \begin{align}\Bbb K_1&=\mathbb{Q}(\omega_1)\cong \Bbb K_2[x]/\left(x^2-\omega_2x+\frac{\omega_2(1+\omega_3)-\omega_3-3}{2}\right) \\&\cong \Bbb K_3[x]/\Big(x^4-\omega_3x^3-(\omega_3+2)x^2+(2\omega_3+3)x-1\Big) \\&\cong\mathbb{Q}[x]/(x^8+x^7-7x^6-6x^5+15x^4+10x^3-10x^2-4x+1),\end{align} and $$\{\omega_1,\omega_1'\}=\left\{\textstyle \frac{\omega_2\pm\sqrt{\omega_2^2-2\big(\omega_2(1+\omega_3)-\omega_3-3\big)}}{2}\right\}=\left\{\frac{\omega_2\pm\sqrt{2\omega_3+7-\omega_2(2+\omega_3)}}{2}\right\}.$$ It can be shown that $$2\cos\left(\frac{2\pi}{17}\right)=\omega_1=\frac{\omega_2+\sqrt{2\omega_3+7-\omega_2(2+\omega_3)}}{2},$$ which means $$\cos\left(\frac{2\pi}{17}\right)=\frac{-1+\sqrt{17}+\sqrt{2(17-\sqrt{17})}+2\sqrt{D}}{16},$$ where $$D=4\big(2\omega_3+7-\omega_2(2+\omega_3)\big),$$ or $$D=17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}.$$ (Observe that $\sqrt{170+38\sqrt{17}}=\sqrt{2(17-\sqrt{17})}+2\sqrt{2(17+\sqrt{17})}$.)

By the way, you can obtain $\zeta$ by noting that $$\zeta+\frac{1}{\zeta}=\zeta+\zeta^{16}=\omega_1.$$ Therefore, $\zeta$ (as well as $\bar\zeta=\frac{1}{\zeta}=\zeta^{16}$) is a root of the polynomial $x^2-\omega_1x+1$. That is, $\Bbb K=\mathbb{Q}(\zeta)$ satisfies \begin{align}\Bbb K&=\mathbb{Q}(\zeta)\cong\mathbb{K}_1[x]/(x^2-\omega_1x+1) \\&\cong\mathbb{K}_2[x]/\Big(x^4-\omega_2x^3+{\textstyle\frac{\omega_2(1+\omega_3)-\omega_3+1}{2}}x^2-\omega_2x+1\Big) \\&\cong\mathbb{K}_3[x]/\big({\small x^8-\omega_1x^7+(2-\omega_1)x^6+(3-\omega_1)x^5+(1-2\omega_1)x^4+(3-\omega_1)x^3+(2-\omega_1)x^2-\omega_1x+1}\big) \\&\cong\mathbb{Q}[x]/({\small x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1}).\end{align} We have $$\left\{\zeta,\bar{\zeta}\right\}=\left\{\frac{\omega_1\pm i\sqrt{4-\omega_1^2}}{2}\right\}.$$ Obviously, $$\zeta=\frac{\omega_1+i\sqrt{4-\omega_1^2}}{2},$$ so that $$\sin\left(\frac{2\pi}{17}\right)=\frac{\sqrt{4-\omega_1^2}}{2}.$$ It is too much work to write down this value, but the value of $\sin\left(\frac{2\pi}{17}\right)$ in terms of radicals can be seen here. The minimal polynomials of $\cos\left(\frac{2\pi}{17}\right)$ and $\sin\left(\frac{2\pi}{17}\right)$ in $\mathbb{Z}[x]$ are respectively. $$\small 256x^8+128x^7-448x^6-192x^5+240x^4+80x^3-40x^2-8x+1$$ and $$\scriptsize 65536x^{16}-278528x^{14}+487424x^{12}+452608x^{10}+239360x^8-71808x^6+11424x^4-816x^2+17.$$ I end my answer with this construction of the regular heptadecagon.

Batominovski
  • 49,629
  • How to obtain $$\omega_1\omega_1'=\frac{\omega_2^2-\omega_2'-4}{2}$$, that's right but I can't find this out, how to deduce this relationship. – Aster May 30 '22 at 16:53
4

This is an elementary proof. Let $\varphi=\frac\pi{17}$, $$S=-\sum_{n=1}^8(-1)^n\cos(n\varphi)$$ Multiplication by $2\cos(\varphi/2)$ gives: \begin{align} 2S\cos\left(\frac\varphi 2\right) &=-\sum_{n=1}^8(-1)^n\left(\cos\left(\frac{2n-1}2\varphi\right)-\cos\left(\frac{2n+1}2\varphi\right)\right)\\ &=\cos\left(\frac 12\varphi\right)-\cos\left(\frac{17}2\varphi\right)\\ &=\cos\left(\frac\varphi2\right) \end{align} so that $S=\frac 12$. Now let \begin{align} X&=\cos(3\varphi)+\cos(5\varphi)-\cos(6\varphi)+\cos(7\varphi)\\ Y&=-\cos(\varphi)+\cos(2\varphi)+\cos(4\varphi)+\cos(8\varphi) \end{align} so that $X-Y=\frac 12$. Moreover, $XY=4S=2$, hence $XY=1$ which gives \begin{align} &X=\frac{\sqrt{17}+1}4&&Y=\frac{\sqrt{17}-1}4 \end{align} Now let \begin{align} z&=\cos(3\varphi)+\cos(5\varphi)\\ x&=\cos(6\varphi)-\cos(7\varphi) \end{align} so that $X=z-w$. Then $2zx=S=\frac 12$, so that we obtain \begin{align} z&=\frac{1+\sqrt{17}+\sqrt{34+2\sqrt{17}}}8\\ x&=\frac{-1-\sqrt{17}+\sqrt{34+2\sqrt{17}}}8 \end{align} Similarly, $y=\cos(\varphi)-\cos(4\varphi)$ and $v=\cos(2\varphi)+\cos(8\varphi)$ satisfy $Y=v-y$ and $yv=\frac 14$, thus giving \begin{align} y&=\frac{1-\sqrt{17}+\sqrt{34-2\sqrt{17}}}8\\ v&=\frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}}8 \end{align} Finally $\cos(2\varphi)+\cos(8\varphi)=v$ and $\cos(2\varphi)\cos(8\varphi)=\frac x2$ from which we get $$\cos(2\varphi)=\frac 1{16}\left(-1+\sqrt{17}+\sqrt{34-2\sqrt{17}+2\sqrt{17+3\sqrt{17}-\sqrt{170+38\sqrt{17}}}}\right)$$

0

Calculate all the required sums and products of Gauss periods $\eta_{e,j}$ (taking $g=3$) below; then $\cos \frac{2\pi}{17}$ can be reached via consecutive quadratic equations as follows:

$$(x-\eta_{2,0})(x-\eta_{2,1}) = x^2 + x - 4\text{ ; where }\eta_{2,0} > 0 \text{ and } \eta_{2,1} < 0$$ $$(x-\eta_{4,0})(x-\eta_{4,2}) = x^2 - \eta_{2,0}x - 1 \text{ ; where }\eta_{4,0} > 0$$ $$(x-\eta_{4,1})(x-\eta_{4,3}) = x^2 - \eta_{2,1}x - 1 \text{ ; where }\eta_{4,1} > 0$$ $$(x-\eta_{8,0})(x-\eta_{8,4}) = x^2 - \eta_{4,0}x + \eta_{4,1}\text{ ; where }\eta_{8,0} > 0$$ $$\cos \frac{2\pi}{17} = \frac{\eta_{8,0}}{2}$$

Thus $$\eta_{2,0} = \frac{-1 + \sqrt{17}}{2}$$ $$\eta_{2,1} = \frac{-1 - \sqrt{17}}{2}$$ $$\eta_{2,0}^2 + 4 = \frac{18 - 2\sqrt{17}}{4} + 4 = \frac{1}{4} (34 - 2\sqrt{17})$$ $$\eta_{4,0} = \frac{\eta_{2,0} + \sqrt{\eta_{2,0}^2 + 4}}{2} = \frac{-1 + \sqrt{17} + \sqrt{34 - 2\sqrt{17}}}{4}$$ $$\eta_{2,1}^2 + 4 = \frac{18 + 2\sqrt{17}}{4} + 4 = \frac{1}{4} (34 + 2\sqrt{17})$$ $$\eta_{4,1} = \frac{\eta_{2,1} + \sqrt{\eta_{2,1}^2 + 4}}{2} = \frac{-1 - \sqrt{17} + \sqrt{34 + 2\sqrt{17}}}{4}$$ $$\eta_{4,0}^2 - 4\eta_{4,1} = \\ \frac{1}{16} \left(18 - 2\sqrt{17} + 34 - 2\sqrt{17} + 2(-1 + \sqrt{17})\sqrt{34 - 2\sqrt{17}} - 16\left(-1 - \sqrt{17} + \sqrt{34 + 2\sqrt{17}}\right)\right) \\ \stackrel{(*)}{=} \frac{1}{16} \left(68 + 12\sqrt{17} - 8\sqrt{34 + 2\sqrt{17}} - 4\sqrt{34 - 2\sqrt{17}}\right)\\ = \frac{1}{4} \left(17 + 3\sqrt{17} - 2\sqrt{34 + 2\sqrt{17}} - \sqrt{34 - 2\sqrt{17}}\right)$$ $$\cos \frac{2\pi}{17} = \frac{\eta_{8,0}}{2} = \frac{\eta_{4,0} + \sqrt{\eta_{4,0}^2 - 4\eta_{4,1}}}{4} \\ = \frac{1}{16} \left(-1 + \sqrt{17} + \sqrt{34 - 2\sqrt{17}} + 2\sqrt{17 + 3\sqrt{17} - 2\sqrt{34 + 2\sqrt{17}} - \sqrt{34 - 2\sqrt{17}}}\right)$$

(*) use the equality $$(1 + \sqrt{17})\sqrt{34 - 2\sqrt{17}} = \sqrt{(18 + 2\sqrt{17})(34 - 2\sqrt{17})} = 2\sqrt{(9 + \sqrt{17})(17 - \sqrt{17})} = 2\sqrt{153 - 17 + 8 \sqrt{17}} = 4\sqrt{34 + 2 \sqrt{17}}$$

Another equality that can be used in similar cases: $$(-1 + \sqrt{17})\sqrt{34 + 2\sqrt{17}} = 4\sqrt{34 - 2 \sqrt{17}}$$

Maestro13
  • 1,960
  • You recently posted this answer elsewhere. Please do not duplicate answers. If you believe that one post answers two or more questions, then please answer at most one of those questions, and flag the remainder as duplicates. – Xander Henderson Oct 06 '21 at 14:33