-1

I am trying to prove that if $gcd(n,m)=1$ and $x\equiv y(mod\phi(m))$ then $n^{x}\equiv n^{y}(modm)$. Any help would be much appreciated!

Teplotaxl
  • 761

1 Answers1

-1

$\text{gcd}(n,m)=1\implies n^{\phi(m)}\equiv 1(\text{ mod } m)$.

Now, $x\equiv y(\text{ mod }\phi(m))\implies x=y+k\phi(m)$ for some integer $k$.

Now, $$n^x=n^{y+k\phi(m)}=n^y\cdot \big(n^{\phi(m)}\big)^k\equiv n^y\cdot (1)^k=n^y(\text{ mod } m).$$

Sumanta
  • 9,534