By $\, ab\,\bmod\, \color{#90f}{ac}\, =\ a\,(b\bmod c)\, =\, $ mod Distributive Law $ $ & $\!\overbrace{\color{#c00}{2^{\large 10}}\! = 1024\equiv -1\pmod{\!25}}^{\!\!\!\!\!\Large {\rm or}\ \, \color{#c00}{2^{\LARGE 20}\equiv\ 1}\ \ {\rm by\ Euler\ \phi\ (totient)}}\,$
$\ \ 2^{\large 20J}\!\! \bmod \color{#90f}{100}\,
=\, 4\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\underbrace{\left[\dfrac{\color{#c00}{2}^{\large\color{#c00}{20}J}}4\!\bmod 25\right]}_{\large\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \equiv\ {\small\dfrac{\color{#c00}1}4}\equiv\ {\small\dfrac{-24}4}\,\ \equiv\ -6\ \ \equiv\ \ \color{#0a0}{19}}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!
= 4[\color{#0a0}{19}] = 76$ $\, \left\{\!\begin{align} &\text{mDL = ${\it operational}$ version of $\rm\small CRT$}\\ &\!\text { as explained in prior linked answer.}\end{align}\right.$
Remark $ $ Above used $\,4\mid \color{#c00}2^{\large \color{#c00}{20}J}\ $ by $\,J\ge 1\,\ [J=50\ \ \rm in\ OP].\ $ Another example from here
$\ \ 35^{\large 73} 53^{\large 25}\bmod 100\, =\, 25\left[\dfrac{35^{\large 73} 53^{\large 25}}{25}\bmod 4\right] = 25\overbrace{\left[\dfrac{(-1)^{\large 73} 1^{\large 25}}{1}\bmod 4\right]}^{\ \ \ \large \equiv\ -1\ \equiv\ \color{#c00}{ 3}\ \pmod{\!4}^{\phantom{|}}} = 25[\color{#c00}3] $