Let $A$ a infinite set, prove $card(A)+card(A)=card(A)$
My attempt:
Let $A$ a infinite set. Then we have a subset $B$ of $A$ such that B is infinte countable, this implies: $card(B)=card(\mathbb{N})$
Then: $card(\mathbb{N})=card(\mathbb{N}\cup\mathbb{N})=card(\mathbb{N})+card(\mathbb{N})$.
This implies:
$card(B)=card(B)+card(B)$
But i need this for $card(A)$. Here i'm stuck, can someone help me?