Here is a start,
$$ X_{n+1}(t) = X_0 + A \int_0^t X_n(\tau) d \tau$$
$$= X_0 + \int_0^t A\left(X_0 + A \int_0^t X_{n-1}(\tau) d \tau \right) d \tau $$
$$ = X_0 + AX_0 t + \int_{0}^{t}(t-\tau)A^2 X_{n-1}(\tau) d\tau $$
$$ = X_0 + AX_0 t + \int_{0}^{t}(t-\tau)A^2 \left(X_0 + A \int_0^t X_{n-2}(\tau) d \tau \right) d\tau $$
$$ = X_0 + AX_0 \,t +\int_{0}^{t}(t-\tau)A^2X_0 d\tau + \frac{1}{2!}\int_0^t (t-\tau)^2 A^3X_{n-2}(\tau) d \tau $$
$$ = X_0 + AX_0 \,t +A^2X_0 \frac{t^2}{2!}+ \frac{1}{2}\int_0^t (t-\tau)^2 A^3X_{n-2}(\tau) d \tau = \ldots. $$
I leave it here for you to finish the problem. Work out few other terms to see the pattern. See here for the iterated integration.