0

From "An Introduction to Lebesgue Integration and Fourier Series" by Howard J. Wilcox and David L. Myers:

1.1 Definition: A partition $P$ of a closed interval $[a, b]$ is a finite sequence $(x_{0}, x_{1}, \ldots, x_{n})$ such that $a = x_{0} < x_{1} < \ldots < x_{n} = b$. The norm of $P$, denoted $\left|\left|P\right|\right|$, is defined by $\left|\left|P\right|\right| = \max_{1 \leq i \leq n} (x_{i} - x_{i-1})$.

1.2 Definition: Let $P = (x_{0}, \ldots, x_{n})$ be a partition of $[a, b]$, and let $f$ be defined on $[a, b]$. For each $i = 1, \ldots, n$, let $x_{i}*$ be an arbitrary point in the interval $[x_{i-1}, x_{i}]$. Then any sum of the form $R(f, P) = \sum_{i=1}^{n} f(x_{i}*)(x_{i} - x_{i-1})$ is called a Riemann sum of $f$ relative to $P$.

1.3 Definition: A function $f$ is Riemann integrable on $[a, b]$ if there is a real number $R$ such that for any $\epsilon > 0$, there exists a $\delta > 0$ such that for any partition $P$ of $[a, b]$ satisfying $\left|\left|P\right|\right| < \delta$, and for any Riemann sum $R(f, P)$ of $f$ relative to $P$, we have $\left|R(f,P) - R\right| < \epsilon$.

1.4 Definition: A function $g$, defined on $[a, b]$, is a step function if there is a partition $P = (x_{0}, x_{1}, \ldots, x_{n})$ such that $g$ is constant on each open subinterval $(x_{i-1}, x_{i})$, for $i = 1, \ldots, n$.

1.5 Proposition: Any step function $g$ on $[a, b]$ is Riemann integrable. Furthermore, if $g(x) = c_{i}$ for $x \in (x_{i-1}, x_{i})$, where $(x_{0}, \ldots, x_{n})$ is a partition of $[a, b]$, then $\int_{a}^{b} g(x) dx = \sum_{i=1}^{n} c_{i}(x_{i} - x_{i-1})$.

1.6 Theorem: A function $f$, defined on $[a, b]$, is Riemann integrable on $[a, b]$ if and only if for every $\epsilon > 0$, there are step functions $f_{1}$ and $f_{2}$ such that $f_{1}(x) \leq f(x) \leq f_{2}(x)$ for all $x \in [a, b]$, and $\int_{a}^{b} f_{2}(x) dx - \int_{a}^{b} f_{1}(x) dx < \epsilon$.

Exercise 5.11: Prove Theorem 1.6. (Hint: let $f$ be Riemann integrable on $[a, b]$. Let $\epsilon$, $\delta$, $P$ be as in Definition 1.3. Now if $f_{1}(x) = \text{glb } \{f(x)\mid x \in (x_{i-1}, x_{i})\}$ for $x \in (x_{i-1}, x_{i})$, then $f_{1}$ (defined appropriately at $x_{0}, \ldots, x_{n})$ is a step function lying below $f$. Show that there is a point $x_{i}* \in [x_{i-1}, x_{i}]$ such that $f(x_{i}*) - f_{1}(x) < \epsilon$. Find $f_{2}$ above $f$ in a similar manner, and $x_{i}** \in [x_{i-1}, x_{i}]$ with $f_{2}(x) - f(x_{i}**) < \epsilon$.

For the converse, let $R = \text{lub } \{\int_{a}^{b} f_{1}(x) dx \mid f_{1} \text{a step function and} f_{1} \leq f\}$. Show that $R = \text{glb } \{\int_{a}^{b} f_{2}(x) dx \mid f_{2} \text{a step function and} f \leq f_{2}\}$. Then given $\epsilon > 0$, obtain step functions $f_{1} \leq f \leq f_{2}$ with $R - \int_{a}^{b} f_{1}(x) dx < \epsilon$ and $\int_{a}^{b} f_{2}(x) dx - R < \epsilon$. (Use the fact that $f_{1}$ and $f_{2}$ are integrable to obtain $\delta$.)

Lemma 1. If $S \subset \mathbb{R}$ is non-empty and has a $\text{glb}$, then for every $\epsilon > 0$ there exists an $x \in S$ such that $x - \text{glb } S < \epsilon$.

Proof. Let $\epsilon > 0$. Then $\text{glb } S + \epsilon > \text{glb } S$. Then by the definition of the glb, $\text{glb } S + \epsilon$ is not a lb on $S$. Hence there exists an $x \in S$ such that $x < \text{glb } S + \epsilon$. Then $x - \text{glb } S < \epsilon$.

Lemma 2. If $S \subset \mathbb{R}$ is non-empty and has a $\text{lub}$, then for every $\epsilon > 0$ there exists an $x \in S$ such that $\text{lub } S - x < \epsilon$.

Proof. Let $\epsilon > 0$. Then $\text{lub } S - \epsilon < \text{lub } S$. Then by the definition of the lub, $\text{lub } S - \epsilon$ is not an ub on $S$. Hence there exists an $x \in S$ such that $x > \text{lub } S - \epsilon$. Then $\text{lub } S - x < \epsilon$.

Lemma 3. If $f$ and $g$ are step functions on $[a, b]$, and $f(x) \geq g(x)$ for all $x \in [a, b]$, then $\int_{a}^{b} f(x) dx \geq \int_{a}^{b} g(x) dx$.

Proof. Let $f$ and $g$ be step functions on $[a, b]$ such that $f(x) \geq g(x)$ for all $x \in [a, b]$.

Let $P_{1} = (x_{0}, x_{1}, \ldots, x_{n})$ be a partition such that $f$ is constant on each open subinterval $(x_{i-1}, x_{i})$, for $i = 1, \ldots, n$.

Let $P_{2} = (x_{0}, x_{1}, \ldots, x_{n})$ be a partition such that $g$ is constant on each open subinterval $(x_{i-1}, x_{i})$, for $i = 1, \ldots, n$.

Let $P = P_{1} \cup P_{2}$. Then $P = (x_{0}, x_{1}, \ldots, x_{n})$ is a partition such that $f$ and $g$ are constant on each open subinterval $(x_{i-1}, x_{i})$, for $i = 1, \ldots, n$. Suppose $f(x) = c_{i}$ for $x \in (x_{i-1}, x_{i})$. Suppose $g(x) = d_{i}$ for $x \in (x_{i-1}, x_{i})$. Then $\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} c_{i}(x_{i} - x_{i-1}) \geq \sum_{i=1}^{n} d_{i}(x_{i} - x_{i-1}) = \int_{a}^{b} g(x) dx$.

Lemma 4. If $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$ are both non-empty, and for every $x \in X$ and for every $y \in Y$ it holds that $x \geq y$, then $\text{glb } X \geq \text{lub } Y$.

Proof. Let $y \in Y$. Then for every $x \in X$ it holds that $x \geq y$. Then $y$ is a lb of $X$. Then $y \leq \text{glb } X$. Since $y$ is arbitrary, then for every $y \in Y$ it holds that $y \leq \text{glb } X$. Then $\text{glb } X$ is an ub of $Y$. Then $\text{glb } X \geq \text{lub } Y$.

Lemma 5. If $X \subset \mathbb{R}$ and $Y \subset \mathbb{R}$ are such that $\text{glb } X \geq \text{lub } Y$, and for every $\epsilon > 0$ there exists a $x \in X$ and a $y \in Y$ such that $x - y < \epsilon$, then $\text{glb } X = \text{lub } Y$.

Proof. Let $\epsilon > 0$. Choose $x \in X$ and $y \in Y$ such that $x - y < \epsilon$. Since $x \in X$, then $x \geq \text{glb } X$. Since $y \in Y$, then $y \leq \text{lub } Y$. Then $0 \leq \text{glb } X - \text{lub } Y \leq x - y < \epsilon$. Since this holds for all $\epsilon > 0$ then $\text{glb } X - \text{lub } Y = 0$. Hence $\text{glb } X = \text{lub } Y$.

1.6 Theorem: A function $f$, defined on $[a, b]$, is Riemann integrable on $[a, b]$ if and only if for every $\epsilon > 0$, there are step functions $f_{1}$ and $f_{2}$ such that $f_{1}(x) \leq f(x) \leq f_{2}(x)$ for all $x \in [a, b]$, and $\int_{a}^{b} f_{2}(x) dx - \int_{a}^{b} f_{1}(x) dx < \epsilon$.

Proof.

$\Rightarrow$ If $f$ is a function defined on $[a, b]$, and for every $\epsilon > 0$ there are step functions $f_{1}$ and $f_{2}$ such that $f_{1}(x) \leq f(x) \leq f_{2}(x)$ for all $x \in [a, b]$, and $\int_{a}^{b} f_{2}(x) dx - \int_{a}^{b} f_{1}(x) dx < \epsilon$, then $f$ is Riemann integrable on $[a, b]$.

Let $f$ be a function defined on $[a, b]$.

Let $S = \{\int_{a}^{b} f_{1}(x) dx \mid f_{1} \text{ a step function and } f_{1} \leq f\}$.

Let $T = \{\int_{a}^{b} f_{2}(x) dx \mid f_{2} \text{ a step function and } f \leq f_{2}\}$.

Then $\text{lub } S = \text{glb } T$ by the hypothesis, Lemma 3, Lemma 4, and Lemma 5.

Let $R = \text{lub } S = \text{glb } T$.

Let $\epsilon > 0$.

Let $f_{1}$ and $f_{2}$ be step functions such that $f_{1} \leq f \leq f_{2}$ and $R - \int_{a}^{b} f_{1}(x) dx < \epsilon / 2$ and $\int_{a}^{b} f_{2}(x) dx - R < \epsilon / 2$. These exist by Lemma 1 and Lemma 2.

Let $\delta_{1} > 0$ be such that for any partition $P$ of $[a, b]$ satisfying $\left|\left|P\right|\right| < \delta_{1}$, and for any Riemann sum $R(f_{1},P)$ of $f_{1}$ relative to $P$, we have $\left|R(f_{1},P) - \int_{a}^{b} f_{1}(x) dx\right| < \epsilon / 2$.

Let $\delta_{2} > 0$ be such that for any partition $P$ of $[a, b]$ satisfying $\left|\left|P\right|\right| < \delta_{2}$, and for any Riemann sum $R(f_{2},P)$ of $f_{2}$ relative to $P$, we have $\left|R(f_{2},P) - \int_{a}^{b} f_{2}(x) dx\right| < \epsilon / 2$.

Let $\delta = \text{min}(\delta_{1}, \delta_{2})$.

Let $P = (x_{0}, \ldots, x_{n})$ be a partition of $[a, b]$ such that $\left|\left|P\right|\right| < \delta$.

For each $i = 1, \ldots, n$, let $x_{i}*$ be an arbitrary point in the interval $[x_{i-1}, x_{i}]$.

Then

\begin{align*} \sum_{i=1}^{n} f_{2}(x_{i}*)(x_{i} - x_{i-1}) - R &= \sum_{i=1}^{n} f_{2}(x_{i}*)(x_{i} - x_{i-1}) - R + \int_{a}^{b} f_{2}(x) dx - \int_{a}^{b} f_{2}(x) dx \\ &= [\sum_{i=1}^{n} f_{2}(x_{i}*)(x_{i} - x_{i-1}) - \int_{a}^{b} f_{2}(x) dx] + [\int_{a}^{b} f_{2}(x) dx - R] \\ &< \epsilon / 2 + \epsilon / 2 \\ &= \epsilon \\ \end{align*}

\begin{align*} R - \sum_{i=1}^{n} f_{1}(x_{i}*)(x_{i} - x_{i-1}) &= R - \sum_{i=1}^{n} f_{1}(x_{i}*)(x_{i} - x_{i-1}) + \int_{a}^{b} f_{1}(x) dx - \int_{a}^{b} f_{1}(x) dx \\ &= [\int_{a}^{b} f_{1}(x) dx - \sum_{i=1}^{n} f_{1}(x_{i}*)(x_{i} - x_{i-1})] + [R - \int_{a}^{b} f_{1}(x) dx] \\ &< \epsilon / 2 + \epsilon / 2 \\ &= \epsilon \\ \end{align*}

Since

$\sum_{i=1}^{n} f_{1}(x_{i}*)(x_{i} - x_{i-1}) \leq \sum_{i=1}^{n} f(x_{i}*)(x_{i} - x_{i-1})$

$\sum_{i=1}^{n} f(x_{i}*)(x_{i} - x_{i-1}) \leq \sum_{i=1}^{n} f_{2}(x_{i}*)(x_{i} - x_{i-1})$

Then

$R - \sum_{i=1}^{n} f(x_{i}*)(x_{i} - x_{i-1}) \leq R - \sum_{i=1}^{n} f_{1}(x_{i}*)(x_{i} - x_{i-1}) < \epsilon$

$\sum_{i=1}^{n} f(x_{i}*)(x_{i} - x_{i-1}) - R \leq \sum_{i=1}^{n} f_{2}(x_{i}*)(x_{i} - x_{i-1}) - R < \epsilon$

Hence $\left|\sum_{i=1}^{n} f(x_{i}*)(x_{i} - x_{i-1}) - R\right| < \epsilon$.

$\Leftarrow$ If $f$ is a function defined on $[a, b]$, and $f$ is Riemann integrable on $[a, b]$, then for every $\epsilon > 0$ there are step functions $f_{1}$ and $f_{2}$ such that $f_{1}(x) \leq f(x) \leq f_{2}(x)$ for all $x \in [a, b]$, and $\int_{a}^{b} f_{2}(x) dx - \int_{a}^{b} f_{1}(x) dx < \epsilon$.

Let $f$ be a function defined on $[a, b]$. Let $f$ be Riemann integrable on $[a, b]$. Let $R = \int_{a}^{b} f(x) dx$.

Let $\epsilon > 0$.

Let $\delta > 0$ be such that for any partition $P$ of $[a, b]$ satisfying $\left|\left|P\right|\right| < \delta$, and for any Riemann sum $R(f, P)$ of $f$ relative to $P$, we have $\left|R(f, P) - R\right| < \epsilon / 4$.

Let $P = (x_{0}, \ldots, x_{n})$ be a partition of $[a, b]$ such that $\left|\left|P\right|\right| < \delta$.

Let $c_{i} = \text{glb } \{f(x) \mid x \in (x_{i-1}, x_{i})\}$. Let $f_{1}(x) = c_{i}$ for $x \in (x_{i-1}, x_{i})$. By Lemma 1 there is a point $x_{i}* \in [x_{i-1}, x_{i}]$ such that $f(x_{i}*) - f_{1}(x) = f(x_{i}*) - c_{i} < \epsilon / 4(b - a)$.

Let $d_{i} = \text{lub } \{f(x) \mid x \in (x_{i-1}, x_{i})\}$. Let $f_{2}(x) = d_{i}$ for $x \in (x_{i-1}, x_{i})$. By Lemma 2 there is a point $x_{i}** \in [x_{i-1}, x_{i}]$ such that $f_{2}(x) - f(x_{i}**) = d_{i} - f(x_{i}**) < \epsilon / 4(b - a)$.

Then

$\int_{a}^{b} f_{1}(x) dx = \sum_{i=1}^{n} c_{i} (x_{i} - x_{i-1})$

$\int_{a}^{b} f_{2}(x) dx = \sum_{i=1}^{n} d_{i} (x_{i} - x_{i-1})$

$\left|\sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) - \int_{a}^{b} f(x) dx\right| < \epsilon / 4$

$\left|\sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) - \int_{a}^{b} f(x) dx\right| < \epsilon / 4$.

Hence \begin{align*} \int_{a}^{b} f_{2}(x) dx - \int_{a}^{b} f_{1}(x) dx &= \int_{a}^{b} f_{2}(x) dx \\ &\qquad - \sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) + \sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) \\ &\qquad - \int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx \\ &\qquad - \sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) + \sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) \\ &\qquad - \int_{a}^{b} f_{1}(x) dx \\ &= \sum_{i=1}^{n} d_{i} (x_{i} - x_{i-1}) \\ &\qquad - \sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) + \sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) \\ &\qquad - \int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx \\ &\qquad - \sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) + \sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) \\ &\qquad - \sum_{i=1}^{n} c_{i} (x_{i} - x_{i-1}) \\ &= \sum_{i=1}^{n} d_{i} (x_{i} - x_{i-1}) - \sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) \\ &\qquad + \sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) - \int_{a}^{b} f(x) dx \\ &\qquad + \int_{a}^{b} f(x) dx - \sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) \\ &\qquad + \sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) - \sum_{i=1}^{n} c_{i} (x_{i} - x_{i-1}) \\ &= \sum_{i=1}^{n} (d_{i} - f(x_{i}**)) (x_{i} - x_{i-1}) \\ &\qquad + \sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) - \int_{a}^{b} f(x) dx \\ &\qquad + \int_{a}^{b} f(x) dx - \sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) \\ &\qquad + \sum_{i=1}^{n} (f(x_{i}*) - c_{i}) (x_{i} - x_{i-1}) \\ &< \sum_{i=1}^{n} [\epsilon / 4(b - a)] (x_{i} - x_{i-1}) \\ &\qquad + \sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) - \int_{a}^{b} f(x) dx \\ &\qquad + \int_{a}^{b} f(x) dx - \sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) \\ &\qquad + \sum_{i=1}^{n} [\epsilon / 4(b - a)] (x_{i} - x_{i-1}) \\ &= [\epsilon / 4(b - a)] (b - a) \\ &\qquad + \sum_{i=1}^{n} f(x_{i}**) (x_{i} - x_{i-1}) - \int_{a}^{b} f(x) dx \\ &\qquad + \int_{a}^{b} f(x) dx - \sum_{i=1}^{n} f(x_{i}*) (x_{i} - x_{i-1}) \\ &\qquad + [\epsilon / 4(b - a)] (b - a) \\ &< (\epsilon / 4(b - a))(b - a) + \epsilon / 4 + \epsilon / 4 + (\epsilon / 4(b - a)) (b - a) \\ &= \epsilon. \end{align*}

Is this correct? Can it be improved?

Patrick
  • 105
  • Choose your step functions by the using sup and inf of $f$ in the subintervals created by the partition. This gives you the more standard Darboux definition of Riemann integral. Prove that Darboux definition is equivalent to Riemann definition (this is pretty standard and available on MSE). Then prove that your step function definition is equivalent to Darboux definition (this should be easy) – Paramanand Singh Nov 05 '19 at 03:40
  • @ParamanandSingh Thank you. I added an edit for the proof that the step function definition is equivalent to the Darboux definition. Does that look right? – Patrick Nov 07 '19 at 13:44
  • Yes the proof for equivalence of Darboux definition and step function definition is OK. – Paramanand Singh Nov 08 '19 at 02:42
  • For Darboux and Riemann equivalence see this answer : https://math.stackexchange.com/a/1829729/72031 – Paramanand Singh Nov 08 '19 at 02:48

0 Answers0