How to prove that
$$2\sin \frac{\pi}{14}+2\sin \frac{5\pi}{14}-2\sin \frac{3\pi}{14}=1$$
I absolutely have no idea other than using the property $\sin\bigl(\frac{\pi}{2}-a\bigr)=\cos a\;$
How to prove that
$$2\sin \frac{\pi}{14}+2\sin \frac{5\pi}{14}-2\sin \frac{3\pi}{14}=1$$
I absolutely have no idea other than using the property $\sin\bigl(\frac{\pi}{2}-a\bigr)=\cos a\;$
Using the formula
we need $$S=2\cos3\pi/7+2\cos\pi/7-2\cos2\pi/7$$
As $2\pi/7+5\pi/7=\pi,\cos(\pi-x)=-\cos x$
$$S=2\sum_{r=0}^2\cos(2r+1)\pi/7$$
Use How can we sum up $\sin$ and $\cos$ series when the angles are in arithmetic progression?
With $a=\frac\pi7$ \begin{align} &\ 2\sin \frac{\pi}{14}+2\sin \frac{5\pi}{14}-2\sin \frac{3\pi}{14}\\ = & \ 2\cos a+ 2\cos 3a + 2\cos 5a \\ =&\ \frac{1}{\sin a}(2\sin a\cos a+ 2\sin a\cos 3a +2\sin a \cos 5a )\\ =&\ \frac{1}{\sin a}(-\sin 0a +\sin 2a -\sin 2a + \sin 4a - \sin 4a + \sin 6a)\\ = &\ \frac{\sin 6a}{\sin a} =1 \end{align}