Let $X$ be a uniformly distributed random variable on $[0,\lambda]$. Let $\{x_i\}$ be a random sample of size $n$ from the population.
Is there any way to compute $E[max\{x_1,...,x_n\}]$ with this information?
Let $X$ be a uniformly distributed random variable on $[0,\lambda]$. Let $\{x_i\}$ be a random sample of size $n$ from the population.
Is there any way to compute $E[max\{x_1,...,x_n\}]$ with this information?
Let $M:=\max\{X_1,\ldots,X_n\}$. Then for $x\in(0,\lambda)$, $$ \mathsf{P}(M\le x)=(\mathsf{P}(X\le x))^n=(x/\lambda)^n, $$ and $$ \mathsf{E}M=\int_0^{\infty}\mathsf{P}(M> x)\,dx=\int_0^{\lambda}1-\left(\frac{x}{\lambda}\right)^n\,dx=\lambda\times \frac{ n}{n+1}. $$