- Prove that $\mathbb{Q}(i) := \{a+bi: a,b\in\mathbb{Q}\}$ is a subring of $\mathbb{C}$ (can you check if my proof is correct)?
- Prove that $\mathbb{Q}(i)$ is a field (and that it is a subfield of $\mathbb{C}.$)
Side note: just to verify, $\mathbb{Q}(i)$ is NOT an ideal of $\mathbb{C},$ right? However, it is a subring, right?
1) We know $0\in \mathbb{Q}(i)$ so it is nonempty. Let $x\in\mathbb{Q}(i).$ Then $x=a+bi, a,b\in\mathbb{Q}.$ Since $a,b\in\mathbb{Q},$$a,b\in\mathbb{R},$ so $x\in\mathbb{C}.$
Additionally, $\sqrt{2}\in\mathbb{C}$ but $\sqrt{2}\not\in\mathbb{Q}(i),$ so $\emptyset\neq\mathbb{Q}(i)\subsetneq \mathbb{C}.$
Let $x,y\in \mathbb{Q}(i).$ Then $x=a+bi$ and $y=a_2+b_2i,$ where $a,a_2,b,b_2\in\mathbb{Q}.$ Thus $x-y=(a-a_2)+(b-b_2)i\in\mathbb{Q}$ as $(a-a_2)+(b-b_2)\in\mathbb{Q}.$ Additionally, $xy = (aa_2-bb_2)+(ba_2+ab_2)i\in\mathbb{Q}$ as $(aa_2-bb_2),(ba_2+ab_2)\in\mathbb{Q}.$ Therefore $\mathbb{Q}(i)$ is a subring of $\mathbb{C}.$
2) We already proved that $\mathbb{Q}(i)$ is a nonempty subset of $\mathbb{C},$ so we just need to show that it's a subfield. If my understanding is correct, then $\mathbb{Q}(i)$ is unital as $1\in\mathbb{Q}(i)$ and $\forall x\in \mathbb{Q}(i), 1\cdot x=x\cdot 1=x.$ Additionally, we show that $\mathbb{Q}(i)$ is commutative. Let $x,y\in \mathbb{Q}(i).$ Then $x=a+bi$ and $y=a_2+b_2i,$ where $a,a_2,b,b_2\in\mathbb{Q}.$ Thus $xy = (aa_2-bb_2)+(ba_2+ab_2)i$ and $yx=(a_2a-b_2b)+(a_2b+b_2a)i = xy$ by commutativity of multiplication.
Let $x=a+bi\in\mathbb{Q}(i)$ be a nonzero element. Then it has an inverse $\dfrac{a}{a^2+b^2}-\dfrac{b}{a^2+b^2}i\in\mathbb{Q}(i)$ as $\dfrac{a}{a^2+b^2},\dfrac{b}{a^2+b^2}\in\mathbb{Q}(i).$ Is this enough to show it's a field? I showed it for a general element, so maybe?