Cancelling $3$ yields $\bmod 34\!:\,\ 13x\equiv 25\iff x\equiv \dfrac{25}{13}\equiv \dfrac{75}{39}\equiv \dfrac{75}5\equiv 15$ by Gauss's algorithm
If you only need to prove that a solution exists then:
$$\begin{align} \exists x\!:\,\ &39x\equiv 75\!\!\!\pmod{\!102} \\
\iff \exists x,y\!:\,\ &39x - 102y=75\\
\iff\qquad\quad\ &(39,102)\mid 75,\ \ {\rm by\ \ Bezout}\\
\iff\qquad\quad\ &\qquad\quad\ 3\mid 75,\ \ {\rm by}\ \ (39,102) = 3(13,34) = 3\\
\text{The calculation above goes further, viz.}\\[.5em]
\exists x\!:\,\ &39x\equiv 75\!\!\!\pmod{\!102} \\
\iff \exists x,y\!:\,\ &39x - 102y=75\\
\iff \exists x,y\!:\,\ &13x \,-\, 34y=25,\ \ \text{by cancelling } 3\\
\iff\quad \exists x\!:\,\ & 13x\equiv25\!\!\!\pmod{\!34}\\
\end{align}\qquad\qquad\qquad\qquad\qquad$$
See here for more on this connection between Bezout and (modular) divisibility.