Your error seems to be that you are assuming
$$\sin\left(2\pi k\over11\right)+i\cos\left(2\pi k\over 11\right)={-1\over i^3}\left(\cos\left(2\pi k\over11\right)+i\sin\left(2\pi k\over11\right) \right)$$
You can see that this is wrong if you multiply both sides by $i^3$ and note that the real part on the left becomes $i^4\cos(2\pi k/11)=\cos(2\pi k/11)$, which is not equal to the real part on the right, $-\cos(2\pi k/11)$.
Rather than multiplying and dividing by a power of $i$, it's easier to simply factor the $i$ out front:
$$\begin{align}
\sum_{k=1}^{10}\left(\sin\left(2\pi k\over11\right)+i\cos\left(2\pi k\over11\right)\right)
&=i\sum_{k=1}^{10}\left(\cos\left(2\pi k\over11\right)-i\sin\left(2\pi k\over11\right)\right)\\
&=i\sum_{k=1}^{10}e^{-2\pi ik/11}\\
&=i\left(\sum_{k=0}^{10}e^{-2\pi ik/11}-1 \right)\\
&=i(0-1)\\
&=-i
\end{align}$$