Honestly, the asked conclusion is of no interest. A better writing would have been
Proposition. Let $A,B\in M_n(\mathbb{C})$ s.t. $AB=BA=0$ and $A+B$ is invertible.
Show that $A,B$ are simultaneously similar to
$A'=\begin{pmatrix}0_p&0\\0&U_{n-p}\end{pmatrix},B'=\begin{pmatrix}V_p&0\\0&0_{n-p}\end{pmatrix}$, where $U,V$ are invertible.
Proof. According to previous answers, we know that $rank(A)+rank(B)=n $. Then $Im(B)= \ker(A),Im(A)=\ker(B)$. Let $x\in \ker(A)\cap \ker(B)$; then $(A+B)x=0$ and therefore, $x=0$. According to the dimensions $p,n-p$ of the considered subspaces, $\mathbb{C}^n=\ker(A)\bigoplus\ker(B)$.
Considering an associated basis, we deduce that $A,B$ are simultaneously similar to
$A'=\begin{pmatrix}0_p&0\\0&U_{n-p}\end{pmatrix},B'=\begin{pmatrix}V_p&0\\0&0_{n-p}\end{pmatrix}$, where $U,V$ are invertible.