Let $m$ be a cubefree integer. Set $m=hk^2$, where $h$ is square free, so that $k$ is square-free and $(h,k)=1$. Set $\theta=m^{1/3}$ and $K=\Bbb Q(\theta)$. Then an integral basis for $K$ is $$\{1,\theta,\theta^2/k\}; \text{if $m^2 \not \equiv1(\text{mod 9)}$}, $$ $$\{1,\theta,\frac{k^2\pm k^2\theta+\theta^2}{3k}\}; \text{if $m^2 \equiv 1(\text{mod 9)}$}.$$
Moreover, the discriminant $d(k)$ of $K$ is given by $$f(n) = \begin{cases} -27h^2k^2, & \text{if $m^2 \not \equiv 1(\text{mod 9})$} \\ -3h^2k^2, & \text{if $m^2 \equiv 1(\text{mod 9})$} \end{cases}$$
Can you help me with one problem so that I can do the rest by my own?