$$ \lim_{x \to \infty} \left( x - \sqrt{x^2 - x +2 } \right) $$
I've tried rationalizing the expression but after repeated applications of L'Hospital's rule, it doesn't feel like I'm getting anywhere.
$$ \lim_{x \to \infty} \left( x - \sqrt{x^2 - x +2 } \right) $$
I've tried rationalizing the expression but after repeated applications of L'Hospital's rule, it doesn't feel like I'm getting anywhere.
Note that
$$ \sqrt{x^2 - x + 2} = \sqrt{x^2 -x + \frac{1}{4} + 1.75} = \sqrt{(x - \frac{1}{2})^2 + 1.75}$$.
What is the limit of $ \sqrt{(x - \frac{1}{2})^2 + 1.75} - \sqrt{(x - \frac{1}{2})^2}$?
$\lim _{x\rightarrow \infty }x- \sqrt{{x}^{2}-x+2}=\lim _{x\rightarrow \infty }{\frac { ( x-\sqrt {{x}^{2}-x+2}) ( x+\sqrt {{x}^{2}-x+2}) }{ x+\sqrt {{x}^{2}-x+2}}}=\lim _{x\rightarrow \infty }{\frac{x-2}{x+\sqrt {{x}^{2}-x+2}}}=\frac{1}{2}$
Multiply by conjugate to get $\operatorname{lim}_{x\to \infty}\frac{x-2}{x+\sqrt{x^2-x+2}}=\operatorname{lim}_{x\to \infty}\frac{1-2/x}{1+\sqrt{1-1/x+2/x^2}}=1/2$
Yes rationalize is a good idea, indeed we obtain
$$x - \sqrt{x^2 - x +2 }=x - \sqrt{x^2 - x +2 }\cdot\frac{x + \sqrt{x^2 - x +2 }}{x + \sqrt{x^2 + x +2 }}=\frac{x^2-x^2+x-2}{x+ \sqrt{x^2 + x +2 }}$$
$$=\frac{x-2}{x+ \sqrt{x^2 + x +2 }}=\frac x x\frac{1-\frac 2x}{1+ \sqrt{1 + \frac1x +\frac2{x^2} }}\to \frac12$$
Use Taylor's expansion at order $1$: for $x>0$ \begin{align} x-\sqrt{x^2-x+2}&=x-x\sqrt{1-\frac1x+\frac2{x^2}}=x-x\sqrt{1-\frac1x+o\Bigl(\frac1{x}\Bigr)}\\ &=x-x\Bigl(1-\frac1{2x}+o\Bigl(\frac1{x}\Bigr)\Bigr)=x-\Bigl(x-\frac12 +o(1)\Bigr) \\ &=\frac12+o(1). \end{align}
As you mentioned calculus, you may also substitute $x=\frac{1}{t}$ and consider the limit for $t\to 0^+$:
\begin{eqnarray*} x - \sqrt{x^2 - x +2 } & \stackrel{x=\frac{1}{t}}{=} & \frac{1-\sqrt{1-t+2t^2}}{t} \\ & \stackrel{L'Hosp.}{\sim} & -\frac{4t-1}{2\sqrt{1-t+2t^2}} \\ & \stackrel{t\to 0^+}{\rightarrow} & \frac{1}{2} \\ \end{eqnarray*}
The limit $\lim\limits_{x \to \infty} \left( x - \sqrt{x^2 - x +2 } \right)$ dones not exist! Because $$\lim _{x\to +\infty }x- \sqrt{{x}^{2}-x+2} =\lim _{x\to +\infty }{\frac { ( x-\sqrt {{x}^{2}-x+2}) (x+\sqrt {{x}^{2}-x+2}) }{ x+\sqrt {{x}^{2}-x+2}}}$$ $$=\lim_{x\to+\infty }{\frac{x-2}{x+\sqrt {{x}^{2}-x+2}}}=\frac{1}{2}.$$ But $$\lim _{x\to -\infty }\left(x- \sqrt{{x}^{2}-x+2}\right)=-\infty.$$