First, by angryavian's answer, we know that for all $n\in\mathbb{N}$
$$\sum_{r=0}^n\frac{\binom{n}{r}}{n^r(r+3)}\leq \sum_{r=0}^{n}\frac{1}{r!(r+3)}\leq e-2.$$
Since these are both sums of positive numbers, we are assured that they both converge. Second, let us look at how the terms in the sum behave as $n$ goes to infinity. That is, for a fixed $r$
$$\lim_{n\to\infty}\frac{\binom{n}{r}}{n^r(r+3)}=\lim_{n\to\infty}\frac{n!}{r!(n-r)!n^r(r+3)}=\left(\frac{1}{r!(r+3)}\right)\lim_{n\to\infty}\frac{n!}{(n-r)!n^r}.$$
Now, note that the terms in the limit can be expanded as
$$\frac{n!}{(n-r)!n^r}=\frac{n(n-1)(n-2)\cdots(n-r+1)}{n^r}.$$
However, note that the numerator is a polynomial of degree $r$ and leading coefficient of $1$. Thus, the limit is
$$\left(\frac{1}{r!(r+3)}\right)\lim_{n\to\infty}\frac{n!}{(n-r)!n^r}=\left(\frac{1}{r!(r+3)}\right)\lim_{n\to\infty}\frac{n^r+...}{n^r}=\frac{1}{r!(r+3)}.$$
Let $\epsilon>0$. Now, we will show that these sums are in fact equal in the limit as $n$ goes to infinity. That is, we will show
$$\lim_{n\to\infty}\left(\sum_{r=0}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=0}^n\frac{1}{r!(r+3)}\right)=0$$
Well, we may as well pull out the $r=0$ term to get
$$\lim_{n\to\infty}\left(\sum_{r=0}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=0}^n\frac{1}{r!(r+3)}\right)$$
$$=\lim_{n\to\infty}\left(\frac{\binom{n}{r}}{n^0(0+3)}-\frac{1}{0!(0+3)}\right)+\lim_{n\to\infty}\left(\sum_{r=1}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=1}^n\frac{1}{r!(r+3)}\right)$$
$$=\left(\frac{1}{0!(0+3)}-\frac{1}{0!(0+3)}\right)+\lim_{n\to\infty}\left(\sum_{r=1}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=1}^n\frac{1}{r!(r+3)}\right)$$
$$=\lim_{n\to\infty}\left(\sum_{r=1}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=1}^n\frac{1}{r!(r+3)}\right).$$
Of course, we could perform the same maneuver with $r=1$ to conclude that in the limit
$$=\lim_{n\to\infty}\left(\sum_{r=1}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=1}^n\frac{1}{r!(r+3)}\right)=\lim_{n\to\infty}\left(\sum_{r=2}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=2}^n\frac{1}{r!(r+3)}\right).$$
In fact, for any $r_0\in\mathbb{N}$, we can say
$$=\lim_{n\to\infty}\left(\sum_{r=r_0}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=r_0}^n\frac{1}{r!(r+3)}\right).$$
However, from the beginning of the proof we know that the sum on the right is convergent. Thus, there exists $R$ such that the tail of the sum (past $R$) is less than $\epsilon /2$. That is, for $r_0\geq R$
$$\lim_{n\to\infty}\sum_{r=r_0}^n\frac{1}{r!(r+3)}\leq \frac{\epsilon}{2}.$$
Then using the inequality established above (again, from angryavian's answer) we also know that for $r_0\geq R$
$$\lim_{n\to\infty}\sum_{r=r_0}^n\frac{\binom{n}{r}}{n^r(r+3)}\leq \lim_{n\to\infty}\sum_{r=r_0}^n\frac{1}{r!(r+3)}\leq \frac{\epsilon}{2}.$$
Then for $r_0\geq R$
$$\lim_{n\to\infty}\left(\sum_{r=r_0}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=r_0}^n\frac{1}{r!(r+3)}\right)=\lim_{n\to\infty}\sum_{r=r_0}^n\frac{\binom{n}{r}}{n^r(r+3)}-\lim_{n\to\infty}\sum_{r=r_0}^n\frac{1}{r!(r+3)}$$
$$=\left|\lim_{n\to\infty}\sum_{r=r_0}^n\frac{\binom{n}{r}}{n^r(r+3)}\right|-\left|\lim_{n\to\infty}\sum_{r=r_0}^n\frac{1}{r!(r+3)}\right|$$
$$\leq \left|\lim_{n\to\infty}\sum_{r=r_0}^n\frac{\binom{n}{r}}{n^r(r+3)}\right|+\left|\lim_{n\to\infty}\sum_{r=r_0}^n\frac{1}{r!(r+3)}\right|\leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$
We conclude that
$$\lim_{n\to\infty}\left(\sum_{r=0}^n\frac{\binom{n}{r}}{n^r(r+3)}-\sum_{r=0}^n\frac{1}{r!(r+3)}\right)=0$$
and thus
$$\lim_{n\to\infty}\sum_{r=0}^n\frac{\binom{n}{r}}{n^r(r+3)}=\lim_{n\to\infty}\sum_{r=0}^n\frac{1}{r!(r+3)}$$
Finally, again referencing angryavian's answer, we know the right hand side of this goes to $e-2$. Thus, the original limit in question is $e-2$.