Just want to double check whether all my operations are legal. The result seems to be correct but I want to make sure I didn't make any mistakes. $\require{cancel}$ $$\lim_{x \to 0} \frac{x^{11}-3x^2+\sin x}{e^x - \cos x}=$$ $$=\lim_{x \to 0} \frac{x^{11}-3x^2}{e^x - \cos x}+\frac{\sin x}{e^x - \cos x}=$$ $$=\lim_{x \to 0} \frac{x^{11}-3x^2}{e^x - \cos x}+\frac{x}{e^x - \cos x}\cdot\cancelto{1}{\frac{\sin x}{x}}=$$ $$=\lim_{x \to 0} \frac{x^{11}-3x^2+x}{e^x - 1 + 1 - \cos x}=$$ $$=\lim_{x \to 0} (\frac {1-\cos x}{x^{11} - 3x^2 + x} + \frac {e^x-1}{x^{11}-3x^2+x})^{-1}=$$ $$=\lim_{x \to 0} (\frac {1-\cos x}{x^2\cancelto{-\infty}{(x^9-3-\frac {1}{x})}} + \frac {e^x-1}{x\cancelto{1}{(x^{10}-3x+1)}})^{-1}=$$ $$ =\lim_{x \to 0} (\cancelto{\frac{1}{2}}{\frac{1-\cos x}{x^2}}\cdot\cancelto{0}{\frac{1}{-\infty}} + \cancelto{1}{\frac {e^x-1}{x}})^{-1}=$$ $$=\lim_{x \to 0} (\frac {1}{2} \cdot0+ 1)^{-1}=$$ $$=(0+1)^{-1} = 1$$
Is this correct?