Well then $9$ ninth roots of unity are $r_k = \cos \frac {2k\pi}9 + i \sin\frac {2k\pi}9$ for $k = 0..... 9$.
Now $(z^6 + z^3 + 1)(z^3 - 1) = z^9 -1 = (z-r_0)(z-r_1)(z-r_2)....(z-r_8)$.
And $(z^6 + z^3 + 1) = \frac {(z-r_0)(z-r_1)(z-r_2)....(z-r_8)}{z^3 -1}$.
Now notice the $3$ third roots of unity are $s_j = \cos \frac {2j\pi}3 + i\sin \frac {2j\pi}3= \cos \frac {2*3j\pi}9 + i\sin \frac {2*3j\pi}9 = r_{3j}$.
So the three third roots of unity or $r_0, r_3, $ and $r_6$ and $z^3-1 = (z-r_0)(z-r_3)(z-r_6)$.
So $(z^6 + z^3 + 1) = \frac {(z-r_0)(z-r_1)(z-r_2)....(z-r_8)}{z^3 -1}=$
$\frac {(z-r_0)(z-r_1)(z-r_2)....(z-r_8)}{(z-r_0)(z-r_3)(z-r_6)} = $
$(z-r_1)(z-r_2)(z-r_4)(z-r_5)(z-r_7)(z-r_8)=$
$[(z-r_1)(z-r_8)][(z-r_2)(z-r_7)][(z-r_4)(z-r_5)]$.
Now notice that $[(z-r_k)(z-r_{9-k})] =$
$(z - (\cos \frac {2k\pi}9 + i\sin\frac {2k\pi}9))(z - (\cos \frac {2(9-k)\pi}9 + i\sin\frac {2(9-k)\pi}))=$.
(remember your basic trig $\cos|\sin (2\pi + x) = \cos|\sin x$ and $\cos(-x)= \cos x$ and $\sin (-x) = -\sin x$. So....)
$\cos \frac{2(9-k)\pi}9 = \cos \frac {18\pi -2k\pi}=\cos\frac {-2k\pi}9 = \cos \frac {2k\pi}9$
And $\sin\frac{2(9-k)\pi}9 = \sin \frac {18\pi -2k\pi}=\sin\frac {-2k\pi}9 = -\sin \frac {2k\pi}9$
So
$[(z-r_k)(z-r_{9-k})] =$
$(z - (\cos \frac {2k\pi}9 + i\sin\frac {2k\pi}9))(z - (\cos \frac {2(9-k)\pi}9 + i\sin\frac {2(9-k)\pi}))=$
$(z - [\cos \frac {2k\pi}9 + i\sin\frac {2k\pi}9])((z - [\cos \frac {2k\pi}9 - i\sin\frac {2k\pi}9])=$
$z^2 -z([\cos \frac {2k\pi}9 + i\sin\frac {2k\pi}9]+ [\cos \frac {2k\pi}9 - i\sin\frac {2k\pi}9]) + [\cos \frac {2k\pi}9 + i\sin\frac {2k\pi}9][\cos \frac {2k\pi}9 - i\sin\frac {2k\pi}9]=$
$z^2- 2\cos\frac {2k\pi}9 + (\cos^2 \frac {2k\pi}9 + \sin^2\frac {2k\pi}9)=$
$z^2 - 2\cos\frac {2k\pi}9 + 1$.
And that's it....
$z^6 +z^3 + 1 = [(z-r_1)(z-r_8)][(z-r_2)(z-r_7)][(z-r_4)(z-r_5)]=$
$(z^2 -2\cos\frac {2\pi}9 + 1)(z^2- 2\cos \frac {4\pi}9+1) (z^2 - 2\cos\frac {6\pi}9+1)$.