$$\lim\limits_{x\to\infty}x\left(\sqrt{x^{2}+2x}-2\sqrt{x^{2}+x}+x\right)$$$$=\lim\limits_{x\to\infty}x\left(\sqrt{x^{2}+2x}-1-2\sqrt{x^{2}+x}+1+x\right)$$$$=\lim\limits_{x\to\infty}x\left(\sqrt{x^{2}+2x}-1\right)+\lim\limits_{x\to\infty}\left(-2x\right)\left(\sqrt{x^{2}+x}+1\right)+\lim\limits_{x\to\infty}x^{2}$$$$=\lim\limits_{x\to\infty}x\lim\limits_{x\to\infty}\left(x\sqrt{1+\frac{2}{x}}-1\right)+\lim\limits_{x\to\infty}\left(-2x\right)\lim\limits_{x\to\infty}\left(x\sqrt{1+\frac{1}{x}}+1\right)+\lim\limits_{x\to\infty}x^{2}$$$$=\lim\limits_{x\to\infty}x\left(1\right)+\lim\limits_{x\to\infty}\left(-2x\right)\left(\frac{1}{2}\right)+\lim\limits_{x\to\infty}x^{2}= ∞$$
another way I tried:$$\lim\limits_{x\to\infty}x\left(\sqrt{x^{2}+2x}-2\sqrt{x^{2}+x}\right)+\lim\limits_{x\to\infty}x^{2}$$$$=\lim\limits_{x\to\infty}x\left(\sqrt{x^{2}+2x}-2\sqrt{x^{2}+x}\right)\cdot\frac{\sqrt{x^{2}+2x}+2\sqrt{x^{2}+x}}{\sqrt{x^{2}+2x}+2\sqrt{x^{2}+x}}+\lim\limits_{x\to\infty}x^{2}$$$$=\lim\limits_{x\to\infty}\frac{x\left(-2x^{2}-2x\right)}{\sqrt{x^{2}+2x}+2\sqrt{x^{2}+x}}+\lim\limits_{x\to\infty}x^{2}$$$$=\lim\limits_{x\to\infty}\frac{x\left(-2x^{2}-2x\right)}{x\left(\sqrt{1+\frac{2}{x}}+2\sqrt{1+\frac{1}{x}}\right)}+\lim\limits_{x\to\infty}x^{2}$$$$=\lim\limits_{x\to\infty}\frac{\left(-2x^{2}-2x\right)}{\left(\sqrt{1+\frac{2}{x}}+2\sqrt{1+\frac{1}{x}}\right)}+\lim\limits_{x\to\infty}x^{2}$$$$=\lim\limits_{x\to\infty}\frac{-2x^{3}-2x}{3}+\lim\limits_{x\to\infty}x^{2}=\lim\limits_{x\to\infty}\frac{x^{3}\left(-2+\frac{3}{x}-\frac{2}{x^{2}}\right)}{3}=-∞$$
and none of them are the answer, why the solutions are not right and can someone use an elementary way to solve the limit?