How to prove equation of the form $| |y-x| - |z-y| | \leq |x-z| x,y, z \in \Re$ ?
There are 10(?) cases:
(1) $x>y>z$ : $||y-x|-|z-y|| \le x-z$
(2) $x>z>y$ : $|y-x|-z+y \le x-z$
(3) $y>x>z$ : $|y-x-|z-y|| \le x-z$
(4) $y>z>x$ : $|y-x-|z-y||\le |x-z|$
(5) $z>x>y$ : $||y-x|-z+y|\le|x-z|$
(6) $z>y>x$ : $|y-x-z+y|\le|x-z|$
(7) $x=y>z$ : $|x-x|-|z-x|\le|x-z|$
(8) $x=z>y$ : $|y-x|-|x-y| \le |x-x|$
(9) $y=z>x$ : $|z-x|-|z-z| \le |x-z|$
(10)$x=y=z$ : $||x-x|-|x-x||\le |x-x|$
(1) $||y-x|-|z-y||\le x-z \to ||x-y|-|z-y||\le x-z \to |x-y-z+y|\le x-z \\ \to |x-z|\le x-z \to x-z \le x-z$ proved
(2) $|y-x|-z+y\le x-z \to |y-x|+y\le x \to |x-y|+y\le x \to x \le x$ proved
(3) $|y-x-|z-y|| \le x-z \to |y-x-|y-z|| \le x-z \to |y-x-y+z| \le x-z \to \\|-x+z|\le x-z \to |z-x|\le x-z \to |z-x| \le x-z \to |x-z| \le x-z \to \\ x-z\le x-z $ proved
(4) $|y-x-|z-y|| \le |x-z| \to |y-x-|y-z||\le z-x \to |-x+z| \le z-x \to \\ |-x+z| \le z-x \to |z-x| \le z-x \to z-x \le z-x $ proved
(5) $||y-x|-z+y|\le z-x \to |x-y-z+y|\le z-x \to |x-z|\le z-x \to z-x\le z-x$ proved
(6) $|y-x+y-z| \le |x-z| \to |2y-x-z|\le|x-z| \to $ still no idea
(7) $|0-|z-x||\le|x-z| \to |z-x|\le|x-z|$ proved
(8) $|y-x|-|x-y|\le|x-x| \to 0 \le 0$ proved
(9) $|z-x|-|z-z| \le |x-z| \to |z-x|\le|x-z|$ proved
(10)$||x−x|−|x−x||≤|x−x| \to 0\le0$ proved
any ideas how to proceed? what could i do next?