If $R$ is a ring and $a,b \in R$. How do I show that $(a+b)^n -a^n \in \langle \,b\,\rangle$ for all natural numbers
$R$ need not be commutative or unital
If $R$ is a ring and $a,b \in R$. How do I show that $(a+b)^n -a^n \in \langle \,b\,\rangle$ for all natural numbers
$R$ need not be commutative or unital
This can be simply proved by induction. It trivially holds for $n = 1$:
$(a + b) - a = b \in \langle b \rangle; \tag 1$
if
$(a + b)^k - a^k \in \langle b \rangle, \tag 2$
then since $\langle b \rangle \subset R$ is an ideal,
$(a + b)((a + b)^k - a^k) \in \langle b \rangle; \tag 3$
we have
$(a + b)((a + b)^k - a^k) = (a + b)^{k + 1} - (a +b)a^k = (a + b)^{k + 1} - a^{k + 1} - ba^k; \tag 4$
thus
$(a + b)^{k + 1} - a^{k + 1} - ba^k \in \langle b \rangle; \tag 5$
now since
$ba^k \in \langle b \rangle, \tag 6$
we conclude that
$(a + b)^{k + 1} - a^{k + 1} \in \langle b \rangle \tag 7$
as well.
Let $A = \{a,b\}$, considered as a finite alphabet. Then, in a non-commutative setting, $$ (a+b)^n = \sum_{u \in A^n} u $$ Here $A^n$ denotes the set of all words of length $n$. Apart from $a^n$, all these words contain at least one occurrence of $b$, and thus define an element belonging to the ideal generated by $b$. It follows that $(a+b)^n -a^n$ belongs to this ideal.