Find the exact value of $$\sqrt{4+\sqrt{16+\sqrt{64+\sqrt{\cdots}}}}$$
My approach:
Suppose
$$\sqrt{4+\sqrt{4^2+\sqrt{4^3+\sqrt{\cdots}}}} = p \tag{1}$$
By multiplying each side by $2$, we have $$2\sqrt{4+\sqrt{4^2+\sqrt{4^3+\sqrt{\cdots}}}} = 2p \tag{2}$$
and this equation is equivalent to $$\sqrt{4^2 + \sqrt{4^3 + \sqrt{4^4 + \sqrt{\cdots}}}} = 2p \tag{3}$$
Back to our original $p$. By squaring each side, we have $$4 + \sqrt{4^2 + \sqrt{4^3 + \sqrt{4^4 + \sqrt{\cdots}}}} = p^2 \tag{4}$$
It means, $4 + 2p = p^2$.
Solving this quadratic equation, I got $p = 1 + \sqrt5$, taking only the positive value. However, if I take account to scientific calculator approach, the answer tends to the surprisingly nice integer, that is $3$. How can it be? Did I do some mistakes?
Adding note: My friend said that it holds a theorem.
$$\sqrt{x + \sqrt{4x + \sqrt{4^2x + \sqrt{\cdots}}}} = 1 + \sqrt{x} \tag{5}$$
for every positive integer $x$.