Let
$\ v=c-u,$
then
$$I=\int\limits_{c-b}^{c-a}\dfrac{\sin(c-v)\,\mathrm dv}{\sqrt[3]{(v-\sin(c-v))^2}}
= \int\limits_{c-b}^{c-a}\dfrac{\sin(c-v)v^{\mathbf-{\large 2\over3}\,\mathrm dv}}{\left(1-\dfrac{\sin(c-v)}v\right)^{\large 2\over3}},$$
$$I = \int\limits_{c-b}^{c-a} S(c,v)\,\mathrm dv,\tag1$$
where
$$S(c,v) = \sum\limits_{k=0}^\infty(-1)^k\dbinom{-2/3}{k}\sin^{k+1}(c-v)\,v^{^{\Large -\frac{3k+2}3}},\tag2$$
$$\dbinom{-2/3}{k} = \dfrac1{k!}\dfrac{\Gamma\left(\dfrac13\right)}{\Gamma\left(\dfrac13-k\right)} = {(-1)}^k\cdot1\cdot\dfrac23\cdot\dfrac56\cdot\dfrac89\dots\dfrac{3k-1}{3k},\tag3$$

$$2^{2m-1}\sin^{2m}x = \dfrac12\binom{2m}m + \sum\limits_{j=1}^{m}
(-1)^j\dbinom{2m}{m-j}\cos 2jx\tag4$$
(see also Wolfram Alpha test),
$$4^m\sin^{2m+1}x = \sum\limits_{j=0}^{m}(-1)^j\dbinom{2m+1}{m-j}\sin (2j+1)x \tag5$$
(see also Wolfram Alpha test).
Therefore,
$$S(c,v) = S_0(c,v)+S_1(c,v)+S_2(c,v),$$
where
\begin{align}
&S_0(c,v) = \sum\limits_{m=1}^\infty\dbinom{-2/3}{2m}4^{-m}\binom{2m}m\,v^{^{\Large -\frac{6m+2}3}},\\
&S_1(c,v) = \sum\limits_{m=1}^\infty\dbinom{-2/3}{2m}2^{-2m+1}\,v^{^{\Large -\frac{6m+2}3}}\sum\limits_{j=1}^{m}
(-1)^j\dbinom{2m}{m-j}\cos 2j(c-v)\\
&S_2(c,v) = - \sum\limits_{m=0}^\infty\dbinom{-2/3}{2m+1}4^{-m}\,v^{^{\Large -\frac{6m+5}3}}\sum\limits_{j=0}^{m}(-1)^j
\dbinom{2m+1}{m-j}\sin (2j+1)(c-v),\\
\end{align}
wherein
$$S_0(c,v) = \dfrac{_1F_2\left(\dfrac13,\dfrac56,1,\dfrac1{v^2}\right)-1}{v^{^{\Large -\frac{2}3}}},\tag6$$
(see also Wolfram Alpha calculations),
$$I_0(c,v) = \int S_0(c,v) dv = 3\sqrt[3]v \left(_2F_1\left(-\dfrac16,\dfrac13, 1, \dfrac1{v^2}\right) - 1\right) + \mathrm{constant}\tag7$$
(see also Wolfram Alpha integration).
Applying the exponent integral, one can get formulas for the even factors
$$\begin{align}
&f_{m,j}(c,v) = \int \cos(2j(c-v))\, v^{\large- 2m-^2/_3}\,\mathrm dv = -\dfrac12 v^{\large - 2m+^1/_3}\\[4pt]
& \times\left(e^{2ijc} \operatorname E^\,_{\large \,2m+^2/_3}(2ijv) + e^{-2ijc}\operatorname E^\,_{\large \,2m+^2/_3}(-2ijv)\right) +\mathrm{constant}
\end{align}\tag8$$
and for the odd factors
$$\hspace{-30mu}\begin{align}
&g_{m,j}(c,v) = \int \sin((2j+1)(c-v))\, v^{\large -2m - ^5/_3}\,\mathrm dv
= \dfrac i2 v^{\large -2m-^2/_3}\\[4pt]
&\times\Bigg(e^{i(2j+1)c}\operatorname E^\,_{\large \,2m+^5/_3}(i(2j+1)v) - e^{-i(2j+1)c} \operatorname E^\,_{\large \,2m+^5/_3}(-i(2j+1)v)\Big) +\mathrm{constant}.
\end{align}\tag9$$
Therefore, the solution is
$$
\begin{aligned}
&I= \left(I_0(c,v) + \sum\limits_{m=1}^\infty\dbinom{-2/3}{2m}2^{-2m+1}\,\sum\limits_{j=1}^{m}
(-1)^j\dbinom{2m}{m-j}f_{m,j}(c,v)\right. \\[4pt]
&\left. - \sum\limits_{m=0}^\infty\dbinom{-2/3}{2m+1}4^{-m}\,v^{^{\Large -\frac{6m+5}3}}\sum\limits_{j=0}^{m}(-1)^j
\dbinom{2m+1}{m-j}g_{m,j}(c,v)\right)_{c-b}^{c-a},
\end{aligned}\tag{10}
$$
where all used functions are defined by formulas $(7)-(9).$
On the other hand, the identity
$$E_\nu(z) = \dfrac{z^n}{(1-\nu)_n}E_{\nu-n}(z) - e^{-z}\sum\limits_{k=0}^{n-1}\dfrac{z^k}{(1-\nu)_{k+1}}$$
allows to attack obtained result. However, all my attempts were unsuccessful.