0

I am supposed to prove using Binomial theorem that number $$11^{10}-1$$ ends with at least with two zeroes.

My solution so far: $$11^{10}-1=(10+1)^{10}-1$$ $$\sum _{i=1}^{10} \binom{10}{i}10^{10-i}1^{i}=10^{2}\left [ \sum _{i=0}^{8} \binom{10}{i}10^{8-i}..\right ]$$ and from this point I do not know how to continue. Can anyone please help me?

Peter F.
  • 463

1 Answers1

4

You have$$11^{10}=(1+10)^{10}=1+\overbrace{10\times10+\binom{10}2\times10^2+\cdots}^{\text{sum of multiples of }100}$$