Determine the following sum $$\frac{5}{3 \cdot 6 }\cdot \frac{1}{4^2} + \frac{5\cdot 8}{3 \cdot 6 \cdot 9 }\cdot \frac{1}{4^3} + \frac{5 \cdot 8 \cdot 11}{3 \cdot 6 \cdot 9 \cdot 12}\cdot \frac{1}{4^4} + \frac{5\cdot8\cdot 11\cdot 14}{3 \cdot 6\cdot 9\cdot 12 \cdot 15}\cdot \frac{1}{4^5} + \dots \dots$$
I tried to use Generalised Binomial Theorem, but I am unable to find $x,y,r$
The Generalized Binomial Theorem $$(x+y)^{r}=\sum _{k=0}^{\infty }{r \choose k}x^{r-k}y^{k}$$ where the ${r \choose k }$ denotes the falling factorial. I notice that the factors in the numerator is increasing, hence I am unable to use it.