I want to express $\partial_x$ and $\partial_y$ by $\partial_r$ and $\partial_{\phi}$.
From $$ \frac{\partial }{\partial r} = \frac{\partial x}{\partial r}\frac{\partial }{\partial x} + \frac{\partial y}{\partial r}\frac{\partial }{\partial y}$$
$$ \frac{\partial }{\partial \phi} = \frac{\partial x}{\partial \phi}\frac{\partial }{\partial x} + \frac{\partial y}{\partial \phi}\frac{\partial }{\partial y}$$
, substituting $x=r\cos\phi$ and $y=r\sin\phi$, we get follows.
$$ \frac{\partial }{\partial r} = \cos{\phi}\frac{\partial }{\partial x} +\sin\phi\frac{\partial }{\partial y}$$
$$ \frac{\partial }{\partial \phi} = -r\sin{\phi}\frac{\partial }{\partial x} + r\cos\phi\frac{\partial }{\partial y}$$ Rewrite this by matrix as below. $$ \begin{pmatrix} \frac{\partial }{\partial r} \\ \frac{1}{r}\frac{\partial }{\partial \phi} \\ \end{pmatrix}= \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \\ \end{pmatrix} \begin{pmatrix} \frac{\partial }{\partial x} \\ \frac{\partial }{\partial y} \\ \end{pmatrix}$$ $$\Leftrightarrow \begin{pmatrix} \frac{\partial }{\partial x} \\ \frac{\partial }{\partial y} \\ \end{pmatrix}= \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \\ \end{pmatrix} \begin{pmatrix} \frac{\partial }{\partial r} \\ \frac{1}{r}\frac{\partial }{\partial \phi} \\ \end{pmatrix}$$ Then, we can express $\partial_x$ and $\partial_y$ by $\partial_r$ and $\partial_\phi$, we get follows.
$$ \frac{\partial }{\partial x} = \cos\phi\frac{\partial }{\partial r} - \frac{\sin \phi}{r}\frac{\partial }{\partial \phi}$$
$$ \frac{\partial }{\partial y} = \sin\phi\frac{\partial }{\partial r} + \frac{\cos\phi}{r}\frac{\partial }{\partial \phi}$$
However, if we directly calculate $\partial_x$ and $\partial_y$ from $ \frac{\partial }{\partial x} = \frac{\partial r}{\partial x}\frac{\partial }{\partial r} + \frac{\partial \phi}{\partial x}\frac{\partial }{\partial \phi}$ and $ \frac{\partial }{\partial y} = \frac{\partial r}{\partial y}\frac{\partial }{\partial r} + \frac{\partial \phi}{\partial y}\frac{\partial }{\partial \phi}$, result does not meet with each other. For example, \begin{align} &\frac{\partial \phi}{\partial x} \\ =&\frac{1}{r}\frac{\partial \phi}{\partial \cos\phi} \\ =&\frac{1}{r\sin\phi} \end{align} Here, I use the relationship, $\frac{\partial f(x)}{\partial x} = \left(\frac{\partial x}{\partial f(x)}\right)^{-1}$. However, from the first calculation, this $\frac{\partial \phi}{\partial x}$ should be equal to $-\frac{\sin\phi}{r}$. What is the origin of this contradiction? I find this error (many times) when I'm scoring freshman's physics class test as a TA, however I cannot nicely explain why such latter calculation fails.