I am well aware that
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}$$
and
$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{\pi^4}{90}$$
I'm curious. Are there other known identities like the ones above? For instance, what is the following?
$$\frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + \frac{1}{4^6} + \cdots$$
EDIT: This is not a duplicate as I'm not just interested in even powers - it would be nice to obtain insights on odd powers as well, like @Dietrich Burde has done in one of their comments.