solve this integral using integral by parts:
$$\int\sin^{-1}(x) \frac{x}{\sqrt{(1-x^2)^2}}\,dx$$
I used substitution : $\sin^{-1}(x)=t , (so,\sin t=x$), $dt=\frac{1}{\sqrt{1-x^2}}\,dx$
$$\int t \frac{\sin t}{\sqrt{1-\sin^2t}}\,dt= \int t\tan t\, dt$$ now I need some help to calculate: $\int t\tan t\, dt$