I came up with a Complex "Proof" idly at work today that seemed to be rather simple, but proved counterintuitive on paper. Year 12 Student looking into pure mathematics, so all feedback is cool and interesting.
$-i = -1 \times {(-1)}^{1/2}$
$-i = i^2 \times {(-1)}^{1/2}$
$-i = {(i^4)}^{1/2} \times {(-1)}^{1/2}$
Since: $a^n \times b^n = {(ab)}^n$
$-i = (i^4 \times -1)^{1/2}$
And: $i^4 = 1$
$-i = {(-1)}^{1/2}$
$-i = i$
$\therefore -1 = 1$
Awesome.
I expect to use stackexchange religiously in the upcoming years, so I'll debut with this dumb loophole and hopefully come back again with some serious dilemmas.
fake-proofs
tag to your question. – José Carlos Santos Oct 12 '19 at 09:42