Suppose $\{f_n\}$ converges to $f$ almost everywhere and $f_n$ are nonnegative measurable functions. If \begin{equation*} \lim_{n\rightarrow\infty}\int_Ef_n(x)d\mu=\int_Ef(x)d\mu, \end{equation*} then for any measurable subset $F\subseteq E$, \begin{equation*} \lim_{n\rightarrow\infty}\int_Ff_n(x)d\mu=\int_Ff(x)d\mu. \end{equation*}
How do I prove this? What kind of theorem should I use? Thanks.