1) Suppose n is an arbitrary integer
(i) Show that $n(n + 1)$ is divisible by $2$
(ii) Show that $n(n + 1)(n + 2)$ is divisible by $3!$
attempt: Not sure if it's correct.
i) $n^2 + n = $even number
Two odd numbers added together must be an even number, so $n^2 + n$ will always be an even number, so it is divisible by $2$.
ii) note sure how to do.