So we have the function $f(x)=\frac{1}{2}x^TAx+x^Tb+a$. Here $x,b \in \mathbf{R}^d$. $a \in \mathbf{R}$, $A$ is $d\times d$ symmetric, positive definite matrix with distinct positive eigenvalues. I need to find the stationary points of this function, let $x=\langle x_1,...,x_d\rangle, b= \langle b_1,...,b_d\rangle$.
Ok so $A=UDU^T$ where $U=[u_1,...,u_d]$. $D=diag\{\lambda_1,...,\lambda_d\}$ with $\lambda_1>...>\lambda_d$. Hence, $f(x)=x^TUDU^Tx+x^Tb+a$. $\triangledown f=?$