A different method may be of interest:
\begin{align}
\Pr(X/Y \le t) = {} & \Pr(X\le tY) \\[8pt]
= {} & \iint\limits_{(x,y)\,:\,x\,\le\, ty} e^{-\alpha x} e^{-\beta y} \big(\alpha\beta\,d(x,y)\big) \\[8pt]
= {} & \int_0^\infty \left( \int_0^{ty} e^{-(\alpha x+\beta y)} (\alpha\,dx) \right) (\beta\,dy) \tag 1
\end{align}
In the inside integral, $x$ goes from $0$ to $ty$ while $y$ remains fixed; thus we treat $y$ as constant in this substitution:
\begin{align}
& u = x/y \\[6pt]
& du = dx/y \\[6pt]
& \text{As $x$ goes from $0$ to $ty,$} \\
& \text{$u$ goes from $0$ to $t$.}
\end{align}
The integral $(1)$ becomes
\begin{align}
& \int_0^\infty \left( \int_0^t e^{-(\alpha u+\beta)y} (\alpha y\,du) \right) (\beta\,dy)
\end{align}
The point is that the bounds of integration in the inside integral no longer depend on $y,$ so we can alter the order of operations, thus:
\begin{align}
& \int_0^t \left( \int_0^\infty e^{-(\alpha u+\beta)y}\alpha\beta y \, dy \right) \,du \\[8pt]
= {} & \int_0^t \Big( \text{a function of } u \Big)\, du \\[8pt]
\text{So } \Pr(X/Y \le t) = {} & \int_0^t \Big( \text{a function of } u \Big)\, du
\end{align}
Therefore that function of $u$ (which is readily found) must be the probability density function of the random variable $X/Y.$
Appendix: Evaluation of the integral:
\begin{align}
f_{X/Y}(u) = {} & \alpha\beta \int_0^\infty e^{-(\alpha u+\beta)y} y \, dy \\[8pt]
= {} & \frac{\alpha\beta}{(\alpha u+\beta)^2} \int_0^\infty e^{-(\alpha u+\beta)y} (\alpha u+\beta) y \big( (\alpha u + \beta) \, dy \big) \\[8pt]
= {} & \frac{\alpha\beta}{(\alpha u+\beta)^2} \int_0^\infty e^{-v} v \,dv \\[8pt]
= {} & \frac{\alpha\beta}{(\alpha u+\beta)^2}.
\end{align}