Your limit can be found using the series expansions and hence asymptotics of each function near $x=0$.
$$\begin{align}
\lim_{x\to0^+}\left(\frac{\cos^2{(x)}}{x}-\frac{e^x}{\sin{(x)}}\right)
&=\lim_{x\to0^+}\left(\frac{\sin{(x)}\cos^2{(x)}-xe^x}{x\sin{(x)}}\right)\\
&=\lim_{x\to0^+}\left(\frac{\sin{(x)}(1+\cos{(2x)})-2xe^x}{2x\sin{(x)}}\right)\\
&=\lim_{x\to0^+}\left(\frac{(x+o(x^2))(1+1+o(x))-2x(1+x+o(x))}{2x(x+o(x))}\right)\\
&=\lim_{x\to0^+}\left(\frac{2x-2x-2x^2+o(x^2)}{2x^2+o(x^2)}\right)\\
&=\lim_{x\to0^+}\left(\frac{-2x^2+o(x^2)}{2x^2+o(x^2)}\right)\\
&=\lim_{x\to0^+}\left(-1+o(1)\right)\\
&=-1\\
\end{align}$$
Edit: As stated by Greg Martin one can instead use the first terms of the Laurent series expansion of each fraction about zero giving
$$\begin{align}
\lim_{x\to0^+}\left(\frac{\cos^2{(x)}}{x}-\frac{e^x}{\sin{(x)}}\right)
&=\lim_{x\to0^+}\left(\frac{1+o(x)}{x}-\frac{1+x+o(x)}{x+o(x)}\right)\\
&=\lim_{x\to0^+}\left(\frac1x-\frac1x+\frac{o(x)}{x}-\frac{x+o(x)}{x+o(x)}\right)\\
&=\lim_{x\to0^+}\left(-1+o(1)\right)\\
&=-1\\
\end{align}$$