Suppose $f$ and $g$ are are two polynomials with complex coefficents (i.e $f,g \in \mathbb{C}[x]$). Let $m$ be the order of $f$ and let $n$ be the order of $g$.
Are there some general conditions where
$fg= \alpha x^{n+m}$
for some non-zero $\alpha \in \mathbb{C}$