We have to find all $m,n$ belongs to natural numbers such that $\varphi(m) + \varphi(n) = \varphi(mn)$.
I know if $(m,n)=1$, then $ \varphi(m)\varphi(n) = \varphi(mn)$. but, I am confused how I can use this fact here.
We have to find all $m,n$ belongs to natural numbers such that $\varphi(m) + \varphi(n) = \varphi(mn)$.
I know if $(m,n)=1$, then $ \varphi(m)\varphi(n) = \varphi(mn)$. but, I am confused how I can use this fact here.
Let $d=\gcd(m,n)$, $D=\varphi(d)$, $M=\varphi(m)$, $N=\varphi(n)$.
Then $D(M+N)=MNd$, because $\varphi(d) \varphi(mn) = \varphi(m) \varphi(n) d$.
Also, $\varphi(n)$ divides $\varphi(kn)$. Therefore, $M=AD$ and $N=BD$.
Thus, $D^2(A+B)=ABD^2d$ and so $A+B=ABd$. This implies $A \mid B \mid A$ and so $A=B$. Then, $2A=A^2d$ implies $d=1$ or $d=2$.
If $d=1$, then $M+N=MN$, which implies $M=N=2$. Therefore, $(m,n)=(3,4)$ or $(m,n)=(4,3)$, because $\varphi(x)=2$ iff $x\in\{3,4,6\}$.
If $d=2$, then $M+N=2MN$, which implies $M=N=1$. Therefore, $(m,n)=(2,2)$.