Let $c(n,k)$ be the $k^{th}$ unsigned Stirling number of the first kind. There are formulas for big $k$'s, namely, $c(n,n-1)= \binom{n}{2}$ and $c(n,n-2) = \frac{3n-1}{4} \binom{n}{3}$.
I wonder whethere there are formulas for small $k$'s, e.g. $c(n,1), c(n,2)$?