Calculate the value of the limit
$$ \lim_{n\rightarrow \infty}\left(\frac{n!}{n^n}\right)^{1/n} $$
Can we solve this without using a Riemann sum method? If so, how?
Calculate the value of the limit
$$ \lim_{n\rightarrow \infty}\left(\frac{n!}{n^n}\right)^{1/n} $$
Can we solve this without using a Riemann sum method? If so, how?
Use Stirling:
$$n! \sim \sqrt{2 \pi n} n^n e^{-n}$$
Note that
$$\left(n^{1/2}\right)^{1/n} = \exp{\left( \frac{\log{n}}{2 n}\right)} \sim 1$$
as $n \rightarrow \infty$. The limit is then $1/e$.
We will use the result
$$ \lim_{n \to \infty} a_n^{1/n} = \lim_{n\to \infty}\frac{a_{n+1}}{a_n} .$$
Let $$ a_n=\frac{n!}{n^n} \implies \frac{a_{n+1}}{a_n}=\frac{(n+1)!n^n}{(n+1)^{n+1}n!} = \left(\frac{n}{n+1}\right)^n $$
$$ \implies \lim_{n\to \infty}\frac{a_{n+1}}{a_n}= \lim_{n\to \infty }\frac{1}{(1+1/n)^n} =e^{-1}. $$
$(1)$ Stirling's Formula: Applying Stirling's formula allows us to conclude that $$\left(\frac{n!}{n^n}\right)^\frac{1}{n}=\frac{1}{e}\left(1+o(1)\right).$$
$(2)$ Riemann Sum: Take the logarithm and notice that this is $$\exp \left(\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{i=1}^{n}\log\frac{i}{n}\right)=\exp\left(\int_{0}^{1}\log xdx\right)=\frac{1}{e}.$$
Do note that Stirling's formula is usually derived from recognizing the Riemann Sum and using analysis.