The ratio is as follows:
$$1 - \cos2x + i\sin2x \over 1 + \cos2x - i\sin 2x$$
I am unsure how to simplify this, as the numerator poses a problem as I try to multiply this equation by $\operatorname{cis}(2x)$ to get a real denominator.
The ratio is as follows:
$$1 - \cos2x + i\sin2x \over 1 + \cos2x - i\sin 2x$$
I am unsure how to simplify this, as the numerator poses a problem as I try to multiply this equation by $\operatorname{cis}(2x)$ to get a real denominator.
HINT
Recall that
$\cos t = \frac{e^{it}+e^{-it}}{2}$
$\sin t = \frac{e^{it}-e^{-it}}{2i}$
$$F=\frac{1-\cos 2x +i \sin 2x}{1+\cos 2x-i\sin 2x} = \frac{2 \sin ^2 x+ 2i \sin x \cos x}{2 \cos^2 x-2 i \sin x \cos x} =i \tan x \frac{\cos x -i \sin x}{\cos x -i \sin x}= i \tan x.$$
Using Intuition behind euler's formula
$$\dfrac{1-e^{-2ix}}{1+e^{2ix}}=\dfrac{e^{-ix}}{e^{ix}}\dfrac{e^{ix}-e^{-ix}}{?}=e^{2ix}\cdot\dfrac{2i\sin x}{2\cos x}=?$$
and here $a=1-\cos 2x$, $b=\sin 2x$, $c=1+\cos2x$, $d=\sin 2x$.
It looks to me as if the numerators simplify nicely
– Henry Sep 29 '19 at 09:19