2

The ratio is as follows:

$$1 - \cos2x + i\sin2x \over 1 + \cos2x - i\sin 2x$$

I am unsure how to simplify this, as the numerator poses a problem as I try to multiply this equation by $\operatorname{cis}(2x)$ to get a real denominator.

  • 1
    You can say $\frac{a+ib}{c-id} = \frac{(a+ib)(c+id)}{(c-id)(c+id)} = \frac{ac-bd }{c^2+d^2}+ i\frac{ad+bd}{c^2+d^2}$

    and here $a=1-\cos 2x$, $b=\sin 2x$, $c=1+\cos2x$, $d=\sin 2x$.

    It looks to me as if the numerators simplify nicely

    – Henry Sep 29 '19 at 09:19
  • I’m one of the people who leaves $\rm e\ i\ π$ upright, just like the other universal numbers like $1\ 2\ 3$, but I left it as $i$ like a variable since that’s what everyone else here has done. – gen-ℤ ready to perish Sep 29 '19 at 09:44

3 Answers3

7

HINT

Recall that

  • $\cos t = \frac{e^{it}+e^{-it}}{2}$

  • $\sin t = \frac{e^{it}-e^{-it}}{2i}$

user
  • 154,566
4

$$F=\frac{1-\cos 2x +i \sin 2x}{1+\cos 2x-i\sin 2x} = \frac{2 \sin ^2 x+ 2i \sin x \cos x}{2 \cos^2 x-2 i \sin x \cos x} =i \tan x \frac{\cos x -i \sin x}{\cos x -i \sin x}= i \tan x.$$

Z Ahmed
  • 43,235
0

Using Intuition behind euler's formula

$$\dfrac{1-e^{-2ix}}{1+e^{2ix}}=\dfrac{e^{-ix}}{e^{ix}}\dfrac{e^{ix}-e^{-ix}}{?}=e^{2ix}\cdot\dfrac{2i\sin x}{2\cos x}=?$$