If you insist on the tangent substitution, I think you will be mildly disappointed... Taking $t=\tan x$ makes it so
$$\begin{cases}
\sin x=\frac t{\sqrt{1+t^2}}\\[1ex]
\cos x=\frac1{\sqrt{1+t^2}}\\[1ex]
\mathrm dt=\sec^2x\,\mathrm dx\implies\mathrm dx=\frac{\mathrm dt}{1+t^2}
\end{cases}$$
The integral becomes
$$\int\cos^2x\sin^4x\,\mathrm dx=\int\frac1{1+t^2}\frac{t^4}{(1+t^2)^2}\frac{\mathrm dt}{1+t^2}=\int\frac{t^4}{(1+t^2)^4}\,\mathrm dt$$
Decompose the integrand into partial fractions:
$$\frac{t^4}{(1+t^2)^4}=\frac1{(1+t^2)^2}-\frac2{(1+t^2)^3}+\frac1{(1+t^2)^4}$$
But then the obvious means of tackling these integrals is to undo the original one:
$$\int\frac{\mathrm dt}{(1+t^2)^2}=\int\frac{\sec^2x}{(1+\tan^2x)^2}\,\mathrm dx=\int\cos^2x\,\mathrm dx$$
$$-\int\frac2{(1+t^2)^3}\,\mathrm dt=-2\int\frac{\sec^2x}{(1+\tan^2x)^3}\,\mathrm dx=-2\int\cos^4x\,\mathrm dx$$
$$\int\frac{\mathrm dt}{(1+t^2)^4}=\int\frac{\sec^2x}{(1+\tan^2x)^4}\,\mathrm dx=\int\cos^6x\,\mathrm dx$$
so all that work to confirm what other answers have suggested: write the integrand in terms of powers of either $\cos x$ or $\sin x$, then use the well-known power reduction identities.
$$\int \cos^2 x (1 - \cos^2 x)^2 dx$$
– Jeremy Sep 27 '19 at 18:41