-1

$\newcommand{\Ln}{\operatorname{Ln}}$ $$\Ln(\csc(z)) = \Ln(2) + iz$$ I need to know what complex number $z$ is

Lutz Lehmann
  • 126,666

1 Answers1

1

Hint

$$\dfrac{\csc(z)}2=e^{iz}$$

If $e^{iz}=a,$

Using Intuition behind euler's formula

$2a=\dfrac{2i}{a-1/a}$ as $a\ne0$

$a^2-1=i$

$a^2=\sqrt2e^{i\pi/4}$

  • You need to add the condition that the Ln on the left side and thus also the right side has imaginary part in $[-\pi,\pi]$, limiting the real part of $z$. – Lutz Lehmann Sep 27 '19 at 15:20